Cargando…

SMAD transcription factors are altered in cell models of HD and regulate HTT expression

Transcriptional dysregulation is observable in multiple animal and cell models of Huntington's disease, as well as in human blood and post-mortem caudate. This contributes to HD pathogenesis, although the exact mechanism by which this occurs is unknown. We therefore utilised a dynamic model in...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowles, KR, Stone, T, Holmans, P, Allen, ND, Dunnett, SB, Jones, L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310119/
https://www.ncbi.nlm.nih.gov/pubmed/27988204
http://dx.doi.org/10.1016/j.cellsig.2016.12.005
Descripción
Sumario:Transcriptional dysregulation is observable in multiple animal and cell models of Huntington's disease, as well as in human blood and post-mortem caudate. This contributes to HD pathogenesis, although the exact mechanism by which this occurs is unknown. We therefore utilised a dynamic model in order to determine the differential effect of growth factor stimulation on gene expression, to highlight potential alterations in kinase signalling pathways that may be in part responsible for the transcriptional dysregulation observed in HD, and which may reveal new therapeutic targets. We demonstrate that cells expressing mutant huntingtin have a dysregulated transcriptional response to epidermal growth factor stimulation, and identify the transforming growth factor-beta pathway as a novel signalling pathway of interest that may regulate the expression of the Huntingtin (HTT) gene itself. The dysregulation of HTT expression may contribute to the altered transcriptional phenotype observed in HD.