Cargando…

Brain activation to task-irrelevant disorder-related threat in social anxiety disorder: The impact of symptom severity

Unintentional and uncontrollable processing of threat has been suggested to contribute to the pathology of social anxiety disorder (SAD). The present study investigated the neural correlates of processing task-irrelevant, highly ecologically valid, disorder-related stimuli as a function of symptom s...

Descripción completa

Detalles Bibliográficos
Autores principales: Heitmann, Carina Yvonne, Feldker, Katharina, Neumeister, Paula, Brinkmann, Leonie, Schrammen, Elisabeth, Zwitserlood, Pienie, Straube, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310170/
https://www.ncbi.nlm.nih.gov/pubmed/28224080
http://dx.doi.org/10.1016/j.nicl.2017.01.020
Descripción
Sumario:Unintentional and uncontrollable processing of threat has been suggested to contribute to the pathology of social anxiety disorder (SAD). The present study investigated the neural correlates of processing task-irrelevant, highly ecologically valid, disorder-related stimuli as a function of symptom severity in SAD. Twenty-four SAD patients and 24 healthy controls (HC) performed a feature-based comparison task during functional magnetic resonance imaging, while task-irrelevant, disorder-related or neutral scenes were presented simultaneously at a different spatial position. SAD patients showed greater activity than HC in response to disorder-related versus neutral scenes in brain regions associated with self-referential processing (e.g. insula, precuneus, dorsomedial prefrontal cortex) and emotion regulation (e.g. dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus). Symptom severity was positively associated with amygdala activity, and negatively with activation in dorsal anterior cingulate cortex and dlPFC in SAD patients. Additional correlation analysis revealed that amygdala-prefrontal coupling was positively associated with symptom severity. A network of brain regions is thus involved in SAD patients' processing of task-irrelevant, complex, ecologically valid, disorder-related scenes. Furthermore, increasing symptom severity in SAD patients seems to reflect a growing imbalance between neural mechanisms related to stimulus-driven bottom-up and regulatory top-down processes resulting in dysfunctional regulation strategies.