Cargando…
Sequence-specific bias correction for RNA-seq data using recurrent neural networks
BACKGROUND: The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited...
Autores principales: | Zhang, Yao-zhong, Yamaguchi, Rui, Imoto, Seiya, Miyano, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310274/ https://www.ncbi.nlm.nih.gov/pubmed/28198674 http://dx.doi.org/10.1186/s12864-016-3262-5 |
Ejemplares similares
-
Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks
por: Park, Heewon, et al.
Publicado: (2022) -
Correction: Global gene network exploration based on explainable artificial intelligence approach
por: Park, Heewon, et al.
Publicado: (2021) -
Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers
por: Zhang, Yao-zhong, et al.
Publicado: (2021) -
Identification of bacteriophage genome sequences with representation learning
por: Bai, Zeheng, et al.
Publicado: (2022) -
Global gene network exploration based on explainable artificial intelligence approach
por: Park, Heewon, et al.
Publicado: (2020)