Cargando…

α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum

In the classical form of α1-antitrypsin deficiency (ATD) a point mutation leads to accumulation of a misfolded secretory glycoprotein in the endoplasmic reticulum (ER) of liver cells and so ATD has come to be considered a prototypical ER storage disease. It is associated with two major types of clin...

Descripción completa

Detalles Bibliográficos
Autor principal: Perlmutter, David H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310618/
https://www.ncbi.nlm.nih.gov/pubmed/28217691
http://dx.doi.org/10.1515/ersc-2016-0004
_version_ 1782507899066515456
author Perlmutter, David H
author_facet Perlmutter, David H
author_sort Perlmutter, David H
collection PubMed
description In the classical form of α1-antitrypsin deficiency (ATD) a point mutation leads to accumulation of a misfolded secretory glycoprotein in the endoplasmic reticulum (ER) of liver cells and so ATD has come to be considered a prototypical ER storage disease. It is associated with two major types of clinical disorders, chronic obstructive pulmonary disease (COPD) by loss-of-function mechanisms and hepatic cirrhosis and carcinogenesis by gain-of-function mechanisms. The lung disease predominantly results from proteolytic damage to the pulmonary connective tissue matrix because of reduced levels of protease inhibitor activity of α1-anitrypsin (AT) in the circulating blood and body fluids. Cigarette smoking is a powerful disease-promoting modifier but other modifiers are known to exist because variation in the lung disease phenotype is still found in smoking and non-smoking homozygotes. The liver disease is highly likely to be caused by the proteotoxic effects of intracellular misfolded protein accumulation and a high degree of variation in the hepatic phenotype among affected homozygotes has been hypothetically attributed to genetic and environmental modifiers that alter proteostasis responses. Liver biopsies of homozygotes show intrahepatocytic inclusions with dilation and expansion of the ER and recent studies of iPS-derived hepatocyte-like cells from individuals with ATD indicate that the changes in the ER directly vary with the hepatic phenotype i.e there is much lesser alteration in the ER in cells derived from homozygotes that do not have clinically significant liver disease. From a signaling perspective, studies in mammalian cell line and animal models expressing the classical α1-antitrypsin Z variant (ATZ) have found that ER signaling is perturbed in a relatively unique way with powerful activation of autophagy and the NFκB pathway but relatively limited, if any, UPR signaling. It is still not known how much these unique structural and functional changes and the variation among affected homozygotes relate to the tendency of this variant to polymerize and aggregate and/or to the repertoire of proteostasis mechanisms that are activated.
format Online
Article
Text
id pubmed-5310618
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-53106182017-02-15 α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum Perlmutter, David H Endoplasmic Reticulum Stress Dis Article In the classical form of α1-antitrypsin deficiency (ATD) a point mutation leads to accumulation of a misfolded secretory glycoprotein in the endoplasmic reticulum (ER) of liver cells and so ATD has come to be considered a prototypical ER storage disease. It is associated with two major types of clinical disorders, chronic obstructive pulmonary disease (COPD) by loss-of-function mechanisms and hepatic cirrhosis and carcinogenesis by gain-of-function mechanisms. The lung disease predominantly results from proteolytic damage to the pulmonary connective tissue matrix because of reduced levels of protease inhibitor activity of α1-anitrypsin (AT) in the circulating blood and body fluids. Cigarette smoking is a powerful disease-promoting modifier but other modifiers are known to exist because variation in the lung disease phenotype is still found in smoking and non-smoking homozygotes. The liver disease is highly likely to be caused by the proteotoxic effects of intracellular misfolded protein accumulation and a high degree of variation in the hepatic phenotype among affected homozygotes has been hypothetically attributed to genetic and environmental modifiers that alter proteostasis responses. Liver biopsies of homozygotes show intrahepatocytic inclusions with dilation and expansion of the ER and recent studies of iPS-derived hepatocyte-like cells from individuals with ATD indicate that the changes in the ER directly vary with the hepatic phenotype i.e there is much lesser alteration in the ER in cells derived from homozygotes that do not have clinically significant liver disease. From a signaling perspective, studies in mammalian cell line and animal models expressing the classical α1-antitrypsin Z variant (ATZ) have found that ER signaling is perturbed in a relatively unique way with powerful activation of autophagy and the NFκB pathway but relatively limited, if any, UPR signaling. It is still not known how much these unique structural and functional changes and the variation among affected homozygotes relate to the tendency of this variant to polymerize and aggregate and/or to the repertoire of proteostasis mechanisms that are activated. 2016-09-19 2016-09 /pmc/articles/PMC5310618/ /pubmed/28217691 http://dx.doi.org/10.1515/ersc-2016-0004 Text en http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
spellingShingle Article
Perlmutter, David H
α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title_full α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title_fullStr α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title_full_unstemmed α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title_short α1-antitrypsin Deficiency: A Misfolded Secretory Protein Variant with Unique Effects on the Endoplasmic Reticulum
title_sort α1-antitrypsin deficiency: a misfolded secretory protein variant with unique effects on the endoplasmic reticulum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310618/
https://www.ncbi.nlm.nih.gov/pubmed/28217691
http://dx.doi.org/10.1515/ersc-2016-0004
work_keys_str_mv AT perlmutterdavidh a1antitrypsindeficiencyamisfoldedsecretoryproteinvariantwithuniqueeffectsontheendoplasmicreticulum