Cargando…

The effects of pravastatin on the normal human placenta: Lessons from ex-vivo models

INTRODUCTION: Research in animal models and preliminary clinical studies in humans support the use of pravastatin for the prevention of preeclampsia. However, its use during pregnancy is still controversial due to limited data about its effect on the human placenta and fetus. METHODS: In the present...

Descripción completa

Detalles Bibliográficos
Autores principales: Balan, Adelina, Szaingurten-Solodkin, Irit, Swissa, Shani S., Feinshtein, Valeria, Huleihel, Mahmoud, Holcberg, Gershon, Dukler, Doron, Beharier, Ofer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310776/
https://www.ncbi.nlm.nih.gov/pubmed/28199380
http://dx.doi.org/10.1371/journal.pone.0172174
Descripción
Sumario:INTRODUCTION: Research in animal models and preliminary clinical studies in humans support the use of pravastatin for the prevention of preeclampsia. However, its use during pregnancy is still controversial due to limited data about its effect on the human placenta and fetus. METHODS: In the present study, human placental cotyledons were perfused in the absence or presence of pravastatin in the maternal reservoir (PraM). In addition, placental explants were treated with pravastatin for 5, 24 and 72 h under normoxia and hypoxia. We monitored the secretion of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), endothelial nitric oxide synthase (eNOS) expression and activation and the fetal vasoconstriction response to angiotensin-II. RESULTS: The concentrations of PlGF, sFlt-1 and sEng were not significantly altered by pravastatin in PraM cotyledons and in placental explants compared to control. Under hypoxic conditions, pravastatin decreased sFlt-1 concentrations. eNOS expression was significantly increased in PraM cotyledons but not in pravastatin-treated placental explants cultured under normoxia or hypoxia. eNOS phosphorylation was not significantly affected by pravastatin. The feto-placental vascular tone and the fetal vasoconstriction response to angiotensin-II, did not change following exposure of the maternal circulation to pravastatin. CONCLUSION: We found that pravastatin does not alter the essential physiological functions of the placenta investigated in the study. The relevance of the study lays in the fact that it expands the current knowledge obtained thus far regarding the effect of the drug on the normal human placenta. This data is reassuring and important for clinicians that consider the treatment of high-risk patients with pravastatin, a treatment that exposes some normal pregnancies to the drug.