Cargando…

Data on the auditory duration mismatch negativity for different sound pressure levels and visual perceptual loads

The data presented in this article are related to our research article entitled “Effects of sound pressure level and visual perceptual load on the auditory mismatch negativity” (M. Szychowska, R. Eklund, M.E. Nilsson, S. Wiens, 2016) [1]. The duration MMN was recorded at three sound pressure levels...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiens, Stefan, Szychowska, Malina, Eklund, Rasmus, Nilsson, Mats E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310816/
https://www.ncbi.nlm.nih.gov/pubmed/28229115
http://dx.doi.org/10.1016/j.dib.2017.02.007
Descripción
Sumario:The data presented in this article are related to our research article entitled “Effects of sound pressure level and visual perceptual load on the auditory mismatch negativity” (M. Szychowska, R. Eklund, M.E. Nilsson, S. Wiens, 2016) [1]. The duration MMN was recorded at three sound pressure levels (SPLs) during two levels of visual perceptual load. In an oddball paradigm (standard=75 ms, deviant=30 ms, within-subjects design), participants were presented with tones at 56, 66, or 76 dB SPL (between-subjects design). At the same time, participants focused on a letter-detection task (find X in a circle of six letters). In separate blocks, perceptual load was either low (the six letters were the same) or high (the six letters differed). In the first data collection, tones had only 76 dB SPL [2]. In a follow-up data collection with exactly the same procedure, tones had 56 and 66 dB SPL [1]. Here, we report the procedure, the recording of electroencephalography (EEG) and its preprocessing in terms of event-related potentials (ERPs), the preprocessing of behavioral data, as well as the grand mean ERPs in figures. For each participant, the reported ERP data include mean amplitudes for standards, deviants, and the difference wave (MMN) at Fz (with tip of nose as a reference), separately for the combinations of SPL and load. Reported behavioral data include the signal-detection measure d’ as an index of detection performance.