Cargando…

A genetically encoded biosensor for visualising hypoxia responses in vivo

Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Misra, Tvisha, Baccino-Calace, Martin, Meyenhofer, Felix, Rodriguez-Crespo, David, Akarsu, Hatice, Armenta-Calderón, Ricardo, Gorr, Thomas A., Frei, Christian, Cantera, Rafael, Egger, Boris, Luschnig, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312090/
https://www.ncbi.nlm.nih.gov/pubmed/28011628
http://dx.doi.org/10.1242/bio.018226
_version_ 1782508138990141440
author Misra, Tvisha
Baccino-Calace, Martin
Meyenhofer, Felix
Rodriguez-Crespo, David
Akarsu, Hatice
Armenta-Calderón, Ricardo
Gorr, Thomas A.
Frei, Christian
Cantera, Rafael
Egger, Boris
Luschnig, Stefan
author_facet Misra, Tvisha
Baccino-Calace, Martin
Meyenhofer, Felix
Rodriguez-Crespo, David
Akarsu, Hatice
Armenta-Calderón, Ricardo
Gorr, Thomas A.
Frei, Christian
Cantera, Rafael
Egger, Boris
Luschnig, Stefan
author_sort Misra, Tvisha
collection PubMed
description Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.
format Online
Article
Text
id pubmed-5312090
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-53120902017-03-06 A genetically encoded biosensor for visualising hypoxia responses in vivo Misra, Tvisha Baccino-Calace, Martin Meyenhofer, Felix Rodriguez-Crespo, David Akarsu, Hatice Armenta-Calderón, Ricardo Gorr, Thomas A. Frei, Christian Cantera, Rafael Egger, Boris Luschnig, Stefan Biol Open Methods & Techniques Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response. The Company of Biologists Ltd 2016-12-23 /pmc/articles/PMC5312090/ /pubmed/28011628 http://dx.doi.org/10.1242/bio.018226 Text en © 2017. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Methods & Techniques
Misra, Tvisha
Baccino-Calace, Martin
Meyenhofer, Felix
Rodriguez-Crespo, David
Akarsu, Hatice
Armenta-Calderón, Ricardo
Gorr, Thomas A.
Frei, Christian
Cantera, Rafael
Egger, Boris
Luschnig, Stefan
A genetically encoded biosensor for visualising hypoxia responses in vivo
title A genetically encoded biosensor for visualising hypoxia responses in vivo
title_full A genetically encoded biosensor for visualising hypoxia responses in vivo
title_fullStr A genetically encoded biosensor for visualising hypoxia responses in vivo
title_full_unstemmed A genetically encoded biosensor for visualising hypoxia responses in vivo
title_short A genetically encoded biosensor for visualising hypoxia responses in vivo
title_sort genetically encoded biosensor for visualising hypoxia responses in vivo
topic Methods & Techniques
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312090/
https://www.ncbi.nlm.nih.gov/pubmed/28011628
http://dx.doi.org/10.1242/bio.018226
work_keys_str_mv AT misratvisha ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT baccinocalacemartin ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT meyenhoferfelix ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT rodriguezcrespodavid ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT akarsuhatice ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT armentacalderonricardo ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT gorrthomasa ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT freichristian ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT canterarafael ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT eggerboris ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT luschnigstefan ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT misratvisha geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT baccinocalacemartin geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT meyenhoferfelix geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT rodriguezcrespodavid geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT akarsuhatice geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT armentacalderonricardo geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT gorrthomasa geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT freichristian geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT canterarafael geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT eggerboris geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo
AT luschnigstefan geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo