Cargando…
A genetically encoded biosensor for visualising hypoxia responses in vivo
Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-spec...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312090/ https://www.ncbi.nlm.nih.gov/pubmed/28011628 http://dx.doi.org/10.1242/bio.018226 |
_version_ | 1782508138990141440 |
---|---|
author | Misra, Tvisha Baccino-Calace, Martin Meyenhofer, Felix Rodriguez-Crespo, David Akarsu, Hatice Armenta-Calderón, Ricardo Gorr, Thomas A. Frei, Christian Cantera, Rafael Egger, Boris Luschnig, Stefan |
author_facet | Misra, Tvisha Baccino-Calace, Martin Meyenhofer, Felix Rodriguez-Crespo, David Akarsu, Hatice Armenta-Calderón, Ricardo Gorr, Thomas A. Frei, Christian Cantera, Rafael Egger, Boris Luschnig, Stefan |
author_sort | Misra, Tvisha |
collection | PubMed |
description | Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response. |
format | Online Article Text |
id | pubmed-5312090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53120902017-03-06 A genetically encoded biosensor for visualising hypoxia responses in vivo Misra, Tvisha Baccino-Calace, Martin Meyenhofer, Felix Rodriguez-Crespo, David Akarsu, Hatice Armenta-Calderón, Ricardo Gorr, Thomas A. Frei, Christian Cantera, Rafael Egger, Boris Luschnig, Stefan Biol Open Methods & Techniques Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response. The Company of Biologists Ltd 2016-12-23 /pmc/articles/PMC5312090/ /pubmed/28011628 http://dx.doi.org/10.1242/bio.018226 Text en © 2017. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Methods & Techniques Misra, Tvisha Baccino-Calace, Martin Meyenhofer, Felix Rodriguez-Crespo, David Akarsu, Hatice Armenta-Calderón, Ricardo Gorr, Thomas A. Frei, Christian Cantera, Rafael Egger, Boris Luschnig, Stefan A genetically encoded biosensor for visualising hypoxia responses in vivo |
title | A genetically encoded biosensor for visualising hypoxia responses in vivo |
title_full | A genetically encoded biosensor for visualising hypoxia responses in vivo |
title_fullStr | A genetically encoded biosensor for visualising hypoxia responses in vivo |
title_full_unstemmed | A genetically encoded biosensor for visualising hypoxia responses in vivo |
title_short | A genetically encoded biosensor for visualising hypoxia responses in vivo |
title_sort | genetically encoded biosensor for visualising hypoxia responses in vivo |
topic | Methods & Techniques |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312090/ https://www.ncbi.nlm.nih.gov/pubmed/28011628 http://dx.doi.org/10.1242/bio.018226 |
work_keys_str_mv | AT misratvisha ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT baccinocalacemartin ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT meyenhoferfelix ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT rodriguezcrespodavid ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT akarsuhatice ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT armentacalderonricardo ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT gorrthomasa ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT freichristian ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT canterarafael ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT eggerboris ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT luschnigstefan ageneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT misratvisha geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT baccinocalacemartin geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT meyenhoferfelix geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT rodriguezcrespodavid geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT akarsuhatice geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT armentacalderonricardo geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT gorrthomasa geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT freichristian geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT canterarafael geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT eggerboris geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo AT luschnigstefan geneticallyencodedbiosensorforvisualisinghypoxiaresponsesinvivo |