Cargando…
Observation-based correction of dynamical models using thermostats
Models used in simulation may give accurate short-term trajectories but distort long-term (statistical) properties. In this work, we augment a given approximate model with a control law (a ‘thermostat’) that gently perturbs the dynamical system to target a thermodynamic state consistent with a set o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312133/ https://www.ncbi.nlm.nih.gov/pubmed/28265197 http://dx.doi.org/10.1098/rspa.2016.0730 |
Sumario: | Models used in simulation may give accurate short-term trajectories but distort long-term (statistical) properties. In this work, we augment a given approximate model with a control law (a ‘thermostat’) that gently perturbs the dynamical system to target a thermodynamic state consistent with a set of prescribed (possibly evolving) observations. As proof of concept, we provide an example involving a point vortex fluid model on the sphere, for which we show convergence of equilibrium quantities (in the stationary case) and the ability of the thermostat to dynamically track a transient state. |
---|