Cargando…

MS4A6A genotypes are associated with the atrophy rates of Alzheimer's disease related brain structures

Membrane-spanning 4-domains, subfamily A, member 6A (MS4A6A) has been identified as susceptibility loci of Alzheimer's disease (AD) by several recent genome-wide association studies (GWAS), whereas little is known about the potential roles of these variants in the brain structure and function o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jing, Zhang, Wei, Tan, Lin, Wang, Hui-Fu, Wan, Yu, Sun, Fu-Rong, Tan, Chen-Chen, Yu, Jin-Tai, Tan, Lan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312275/
https://www.ncbi.nlm.nih.gov/pubmed/27244883
http://dx.doi.org/10.18632/oncotarget.9563
Descripción
Sumario:Membrane-spanning 4-domains, subfamily A, member 6A (MS4A6A) has been identified as susceptibility loci of Alzheimer's disease (AD) by several recent genome-wide association studies (GWAS), whereas little is known about the potential roles of these variants in the brain structure and function of AD. In this study, we included a total of 812 individuals from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. Using multiple linear regression models, we found MS4A6A genotypes were strongly related to atrophy rate of left middle temporal (rs610932: Pc = 0.017, rs7232: Pc = 0.022), precuneus (rs610932: Pc = 0.015) and entorhinal (rs610932, Pc = 0.022) on MRI in the entire group. In the subgroup analysis, MS4A6A SNPs were significantly accerlated the percentage of volume loss of middle temporal, precuneus and entorhinal, especially in the MCI subgroup. These findings reveal that MS4A6A genotypes affect AD specific brain structures which supported the possible role of MS4A6A polymorphisms in influencing AD-related neuroimaging phenotypes.