Cargando…
IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens
MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5′ regio...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312342/ https://www.ncbi.nlm.nih.gov/pubmed/27486971 http://dx.doi.org/10.18632/oncotarget.10923 |
Sumario: | MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5′ region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma. |
---|