Cargando…
Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin J
BACKGROUND: Cisplatin (DDP)-based chemotherapy is the common first-line therapy for lung cancer. However, their efficacy is often limited by primary drug resistance and/or acquired drug resistance. The aim of this study was to investigate the function of miRNA-146a (miR-146a) in DDP-resistant non-sm...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312565/ https://www.ncbi.nlm.nih.gov/pubmed/28202053 http://dx.doi.org/10.1186/s12885-017-3132-9 |
Sumario: | BACKGROUND: Cisplatin (DDP)-based chemotherapy is the common first-line therapy for lung cancer. However, their efficacy is often limited by primary drug resistance and/or acquired drug resistance. The aim of this study was to investigate the function of miRNA-146a (miR-146a) in DDP-resistant non-small cell lung cancer (NSCLC), as well as the underlying mechanisms. METHODS: The effect of overexpression of miR-146a and/or knockdown of cyclin J (CCNJ) in A549/DDP and SPC-A1/DDP cells were investigated as follows. The cellular sensitivity to DDP, cell apoptosis, cell cycle and cell mobility were detected by CCK-8, flow cytometry, hoechst staining and cell invasion/migration assay, respectively. The effects of miR-146a overexpression in NSCLC resistant cells were further analyzed in a nude mouse xenograft model. RESULTS: Overexpression of miR-146a and/or knockdown of CCNJ significantly increased the sensitivity to DDP in A549/DDP and SPC-A1/DDP cells compared to NC group via arresting cell cycle, enhancing cell apoptosis, inhibiting cell viability and motility in vitro and in vivo. Furthermore, miR-146a could specially degrade the mRNA of CCNJ, as examined by dual luciferase report assay. CONCLUSION: The study indicates a crucial role of miR-146a in the development of acquired drug resistance to DDP in NSCLC cells. Further understanding of miR-146a mediated crosstalk networks may promote the clinical use of miR-146a analogue in NSCLC therapy. |
---|