Cargando…
Electromagnetic Confinement via Spin–Orbit Interaction in Anisotropic Dielectrics
[Image: see text] We investigate electromagnetic propagation in uniaxial dielectrics with a transversely varying orientation of the optic axis, the latter staying orthogonal everywhere in the propagation direction. In such a geometry, the field experiences no refractive index gradients, yet it acqui...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312827/ https://www.ncbi.nlm.nih.gov/pubmed/28217716 http://dx.doi.org/10.1021/acsphotonics.6b00700 |
_version_ | 1782508259641393152 |
---|---|
author | Alberucci, Alessandro Jisha, Chandroth P. Marrucci, Lorenzo Assanto, Gaetano |
author_facet | Alberucci, Alessandro Jisha, Chandroth P. Marrucci, Lorenzo Assanto, Gaetano |
author_sort | Alberucci, Alessandro |
collection | PubMed |
description | [Image: see text] We investigate electromagnetic propagation in uniaxial dielectrics with a transversely varying orientation of the optic axis, the latter staying orthogonal everywhere in the propagation direction. In such a geometry, the field experiences no refractive index gradients, yet it acquires a transversely modulated Pancharatnam–Berry phase, that is, a geometric phase originating from a spin–orbit interaction. We show that the periodic evolution of the geometric phase versus propagation gives rise to a longitudinally invariant effective potential. In certain configurations, this geometric phase can provide transverse confinement and waveguiding. The theoretical findings are tested and validated against numerical simulations of the complete Maxwell’s equations. Our results introduce and illustrate the role of geometric phases on electromagnetic propagation over distances well exceeding the diffraction length, paving the way to a whole new family of guided waves and waveguides that do not rely on refractive index tailoring. |
format | Online Article Text |
id | pubmed-5312827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-53128272017-02-17 Electromagnetic Confinement via Spin–Orbit Interaction in Anisotropic Dielectrics Alberucci, Alessandro Jisha, Chandroth P. Marrucci, Lorenzo Assanto, Gaetano ACS Photonics [Image: see text] We investigate electromagnetic propagation in uniaxial dielectrics with a transversely varying orientation of the optic axis, the latter staying orthogonal everywhere in the propagation direction. In such a geometry, the field experiences no refractive index gradients, yet it acquires a transversely modulated Pancharatnam–Berry phase, that is, a geometric phase originating from a spin–orbit interaction. We show that the periodic evolution of the geometric phase versus propagation gives rise to a longitudinally invariant effective potential. In certain configurations, this geometric phase can provide transverse confinement and waveguiding. The theoretical findings are tested and validated against numerical simulations of the complete Maxwell’s equations. Our results introduce and illustrate the role of geometric phases on electromagnetic propagation over distances well exceeding the diffraction length, paving the way to a whole new family of guided waves and waveguides that do not rely on refractive index tailoring. American Chemical Society 2016-11-11 2016-12-21 /pmc/articles/PMC5312827/ /pubmed/28217716 http://dx.doi.org/10.1021/acsphotonics.6b00700 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Alberucci, Alessandro Jisha, Chandroth P. Marrucci, Lorenzo Assanto, Gaetano Electromagnetic Confinement via Spin–Orbit Interaction in Anisotropic Dielectrics |
title | Electromagnetic Confinement via Spin–Orbit
Interaction in Anisotropic Dielectrics |
title_full | Electromagnetic Confinement via Spin–Orbit
Interaction in Anisotropic Dielectrics |
title_fullStr | Electromagnetic Confinement via Spin–Orbit
Interaction in Anisotropic Dielectrics |
title_full_unstemmed | Electromagnetic Confinement via Spin–Orbit
Interaction in Anisotropic Dielectrics |
title_short | Electromagnetic Confinement via Spin–Orbit
Interaction in Anisotropic Dielectrics |
title_sort | electromagnetic confinement via spin–orbit
interaction in anisotropic dielectrics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312827/ https://www.ncbi.nlm.nih.gov/pubmed/28217716 http://dx.doi.org/10.1021/acsphotonics.6b00700 |
work_keys_str_mv | AT alberuccialessandro electromagneticconfinementviaspinorbitinteractioninanisotropicdielectrics AT jishachandrothp electromagneticconfinementviaspinorbitinteractioninanisotropicdielectrics AT marruccilorenzo electromagneticconfinementviaspinorbitinteractioninanisotropicdielectrics AT assantogaetano electromagneticconfinementviaspinorbitinteractioninanisotropicdielectrics |