Cargando…
Classification of brain disease in magnetic resonance images using two-stage local feature fusion
BACKGROUND: Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of ana...
Autores principales: | Li, Tao, Li, Wu, Yang, Yehui, Zhang, Wensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313178/ https://www.ncbi.nlm.nih.gov/pubmed/28207873 http://dx.doi.org/10.1371/journal.pone.0171749 |
Ejemplares similares
-
A pan-sharpening network using multi-resolution transformer and two-stage feature fusion
por: Fan, Wensheng, et al.
Publicado: (2023) -
Classification Algorithms for Brain Magnetic Resonance Imaging Images of Patients with End-Stage Renal Disease and Depression
por: Cheng, Yan, et al.
Publicado: (2022) -
ENDO_STAGE Magnetic Resonance Imaging: Classification to Screen Endometriosis
por: Bazot, Marc, et al.
Publicado: (2022) -
Functional changes in fusional vergence‐related brain areas and correlation with clinical features in intermittent exotropia using functional magnetic resonance imaging
por: Zhang, Weijia, et al.
Publicado: (2023) -
Colorful Image Colorization with Classification and Asymmetric Feature Fusion
por: Wang, Zhiyuan, et al.
Publicado: (2022)