Cargando…
SoilGrids250m: Global gridded soil information based on machine learning
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capa...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313206/ https://www.ncbi.nlm.nih.gov/pubmed/28207752 http://dx.doi.org/10.1371/journal.pone.0169748 |
_version_ | 1782508319702777856 |
---|---|
author | Hengl, Tomislav Mendes de Jesus, Jorge Heuvelink, Gerard B. M. Ruiperez Gonzalez, Maria Kilibarda, Milan Blagotić, Aleksandar Shangguan, Wei Wright, Marvin N. Geng, Xiaoyuan Bauer-Marschallinger, Bernhard Guevara, Mario Antonio Vargas, Rodrigo MacMillan, Robert A. Batjes, Niels H. Leenaars, Johan G. B. Ribeiro, Eloi Wheeler, Ichsani Mantel, Stephan Kempen, Bas |
author_facet | Hengl, Tomislav Mendes de Jesus, Jorge Heuvelink, Gerard B. M. Ruiperez Gonzalez, Maria Kilibarda, Milan Blagotić, Aleksandar Shangguan, Wei Wright, Marvin N. Geng, Xiaoyuan Bauer-Marschallinger, Bernhard Guevara, Mario Antonio Vargas, Rodrigo MacMillan, Robert A. Batjes, Niels H. Leenaars, Johan G. B. Ribeiro, Eloi Wheeler, Ichsani Mantel, Stephan Kempen, Bas |
author_sort | Hengl, Tomislav |
collection | PubMed |
description | This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. |
format | Online Article Text |
id | pubmed-5313206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53132062017-03-03 SoilGrids250m: Global gridded soil information based on machine learning Hengl, Tomislav Mendes de Jesus, Jorge Heuvelink, Gerard B. M. Ruiperez Gonzalez, Maria Kilibarda, Milan Blagotić, Aleksandar Shangguan, Wei Wright, Marvin N. Geng, Xiaoyuan Bauer-Marschallinger, Bernhard Guevara, Mario Antonio Vargas, Rodrigo MacMillan, Robert A. Batjes, Niels H. Leenaars, Johan G. B. Ribeiro, Eloi Wheeler, Ichsani Mantel, Stephan Kempen, Bas PLoS One Research Article This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. Public Library of Science 2017-02-16 /pmc/articles/PMC5313206/ /pubmed/28207752 http://dx.doi.org/10.1371/journal.pone.0169748 Text en © 2017 Hengl et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hengl, Tomislav Mendes de Jesus, Jorge Heuvelink, Gerard B. M. Ruiperez Gonzalez, Maria Kilibarda, Milan Blagotić, Aleksandar Shangguan, Wei Wright, Marvin N. Geng, Xiaoyuan Bauer-Marschallinger, Bernhard Guevara, Mario Antonio Vargas, Rodrigo MacMillan, Robert A. Batjes, Niels H. Leenaars, Johan G. B. Ribeiro, Eloi Wheeler, Ichsani Mantel, Stephan Kempen, Bas SoilGrids250m: Global gridded soil information based on machine learning |
title | SoilGrids250m: Global gridded soil information based on machine learning |
title_full | SoilGrids250m: Global gridded soil information based on machine learning |
title_fullStr | SoilGrids250m: Global gridded soil information based on machine learning |
title_full_unstemmed | SoilGrids250m: Global gridded soil information based on machine learning |
title_short | SoilGrids250m: Global gridded soil information based on machine learning |
title_sort | soilgrids250m: global gridded soil information based on machine learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313206/ https://www.ncbi.nlm.nih.gov/pubmed/28207752 http://dx.doi.org/10.1371/journal.pone.0169748 |
work_keys_str_mv | AT hengltomislav soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT mendesdejesusjorge soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT heuvelinkgerardbm soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT ruiperezgonzalezmaria soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT kilibardamilan soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT blagoticaleksandar soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT shangguanwei soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT wrightmarvinn soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT gengxiaoyuan soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT bauermarschallingerbernhard soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT guevaramarioantonio soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT vargasrodrigo soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT macmillanroberta soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT batjesnielsh soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT leenaarsjohangb soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT ribeiroeloi soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT wheelerichsani soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT mantelstephan soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning AT kempenbas soilgrids250mglobalgriddedsoilinformationbasedonmachinelearning |