Cargando…
SoilGrids250m: Global gridded soil information based on machine learning
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capa...
Autores principales: | Hengl, Tomislav, Mendes de Jesus, Jorge, Heuvelink, Gerard B. M., Ruiperez Gonzalez, Maria, Kilibarda, Milan, Blagotić, Aleksandar, Shangguan, Wei, Wright, Marvin N., Geng, Xiaoyuan, Bauer-Marschallinger, Bernhard, Guevara, Mario Antonio, Vargas, Rodrigo, MacMillan, Robert A., Batjes, Niels H., Leenaars, Johan G. B., Ribeiro, Eloi, Wheeler, Ichsani, Mantel, Stephan, Kempen, Bas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313206/ https://www.ncbi.nlm.nih.gov/pubmed/28207752 http://dx.doi.org/10.1371/journal.pone.0169748 |
Ejemplares similares
-
SoilGrids1km — Global Soil Information Based on Automated Mapping
por: Hengl, Tomislav, et al.
Publicado: (2014) -
Correction: SoilGrids1km — Global Soil Information Based on Automated Mapping
Publicado: (2014) -
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017) -
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
por: Hengl, Tomislav, et al.
Publicado: (2015) -
HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling
por: Ross, C. Wade, et al.
Publicado: (2018)