Cargando…
Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding
Structured sparse methods have received significant attention in neuroimaging. These methods allow the incorporation of domain knowledge through additional spatial and temporal constraints in the predictive model and carry the promise of being more interpretable than non-structured sparse methods, s...
Autores principales: | Baldassarre, Luca, Pontil, Massimiliano, Mourão-Miranda, Janaina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313509/ https://www.ncbi.nlm.nih.gov/pubmed/28261042 http://dx.doi.org/10.3389/fnins.2017.00062 |
Ejemplares similares
-
Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important
por: Donini, Michele, et al.
Publicado: (2019) -
Learning mixed graphical models with separate sparsity parameters and stability-based model selection
por: Sedgewick, Andrew J., et al.
Publicado: (2016) -
s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography
por: Li, Ying, et al.
Publicado: (2016) -
Decoding social decisions from movement kinematics
por: Turri, Giacomo, et al.
Publicado: (2022) -
EEG Feature Selection via Stacked Deep Embedded Regression With Joint Sparsity
por: Jiang, Kui, et al.
Publicado: (2020)