Cargando…
Are Lung Imaging Reporting and Data System Categories Clear to Radiologists? A Survey of the Korean Society of Thoracic Radiology Members on Ten Difficult-to-Classify Scenarios
OBJECTIVE: To evaluate possible variability in chest radiologists' interpretations of the Lung Imaging Reporting and Data System (Lung-RADS) on difficult-to-classify scenarios. MATERIALS AND METHODS: Ten scenarios of difficult-to-classify imaginary lung nodules were prepared as an online survey...
Autores principales: | Han, Dae Hee, Goo, Jin Mo, Chong, Semin, Ahn, Myeong Im |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313529/ https://www.ncbi.nlm.nih.gov/pubmed/28246521 http://dx.doi.org/10.3348/kjr.2017.18.2.402 |
Ejemplares similares
-
Practice Pattern of Transthoracic Needle Biopsy: 2016 Survey in the Members of Korean Society of Thoracic Radiology
por: Jo, Yeseul, et al.
Publicado: (2017) -
Interstitial Lung Abnormalities: What Radiologists Should Know
por: Chae, Kum Ju, et al.
Publicado: (2021) -
Solitary Fibrous Tumor of the Pleura Manifesting as an Air-Containing Cystic Mass: Radiologic and Histopathologic Correlation
por: Baek, Ji Eun, et al.
Publicado: (2013) -
Using PubMed in radiology: Ten useful tips for radiologists
por: Sriganesh, Vasumathi
Publicado: (2011) -
Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges
por: Hwang, Eui Jin, et al.
Publicado: (2020)