Cargando…
Machine-learned cluster identification in high-dimensional data
BACKGROUND: High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally sugge...
Autores principales: | Ultsch, Alfred, Lötsch, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313598/ https://www.ncbi.nlm.nih.gov/pubmed/28040499 http://dx.doi.org/10.1016/j.jbi.2016.12.011 |
Ejemplares similares
-
Machine-learned pattern identification in olfactory subtest results
por: Lötsch, Jörn, et al.
Publicado: (2016) -
Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical Data
por: Lötsch, Jörn, et al.
Publicado: (2019) -
Machine learning in pain research
por: Lötsch, Jörn, et al.
Publicado: (2018) -
Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans)
por: Ultsch, Alfred, et al.
Publicado: (2022) -
Artificial intelligence and machine learning in pain research: a data scientometric analysis
por: Lötsch, Jörn, et al.
Publicado: (2022)