Cargando…
Quantitative evaluation on the characteristics of activated sludge granules and flocs using a fuzzy entropy-based approach
Activated sludge granules and flocs have their inherent advantages and disadvantages for wastewater treatment due to their different characteristics. So far quantitative information on their evaluation is still lacking. This work provides a quantitative and comparative evaluation on the characterist...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314380/ https://www.ncbi.nlm.nih.gov/pubmed/28211540 http://dx.doi.org/10.1038/srep42910 |
Sumario: | Activated sludge granules and flocs have their inherent advantages and disadvantages for wastewater treatment due to their different characteristics. So far quantitative information on their evaluation is still lacking. This work provides a quantitative and comparative evaluation on the characteristics and pollutant removal capacity of granules and flocs by using a new methodology through integrating fuzzy analytic hierarchy process, accelerating genetic algorithm and entropy weight method. Evaluation results show a higher overall score of granules, indicating that granules had more favorable characteristics than flocs. Although large sized granules might suffer from more mass transfer limitation and is prone to operating instability, they also enable a higher level of biomass retention, greater settling velocity and lower sludge volume index compared to flocs. Thus, optimized control of granule size is essential for achieving good pollutant removal performance and simultaneously sustaining long-term stable operation of granule-based reactors. This new integrated approach is effective to quantify and differentiate the characteristics of activated sludge granules and flocs. The evaluation results also provide useful information for the application of activated sludge granules in full-scale wastewater treatment plants. |
---|