Cargando…

Antithyroglobulin Antibody as a Marker of Successful Ablation Therapy in Differentiated Thyroid Cancer

The aim of this study was to determine the role of antithyroglobulin antibody (ATA) serum as a marker of successful I-131 ablation therapy in differentiated thyroid cancer (DTC) patients with low serum thyroglobulin (Tg). A retrospective study was conducted on 60 patients (10 males and 50 females)....

Descripción completa

Detalles Bibliográficos
Autores principales: Dewi, Ayu Rosemeilia, Darmawan, Budi, Kartamihadja, Achmad Hussein Sundawa, Hidayat, Basuki, Masjhur, Johan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314657/
https://www.ncbi.nlm.nih.gov/pubmed/28217014
http://dx.doi.org/10.4103/1450-1147.174714
Descripción
Sumario:The aim of this study was to determine the role of antithyroglobulin antibody (ATA) serum as a marker of successful I-131 ablation therapy in differentiated thyroid cancer (DTC) patients with low serum thyroglobulin (Tg). A retrospective study was conducted on 60 patients (10 males and 50 females). All patients underwent posttotal thyroidectomy and received 2.96 to 3 GBq I-131 ablation. Subjects were divided into two groups with succesful and unsuccessful I-131 ablation therapies. The data of age, gender, histopathologic type, tumor size, and metastasis were collected. Preablation serum Tg and ATA level (Tg1 and ATA1) 6–12 months after ablation (Tg2 and ATA2) were measured. The success of ablation therapy was evaluated by diagnostic whole body scan (DxWBS) 6–12 months after ablation. There were no significant differences in age, gender, type of histopathology, tumor size, and nodal metastasis between the two groups. ATA2 ≤30 kIU/L were found in 23 (62.2%) subjects with successful ablation therapy, and ATA2 >30 kIU/L in 16 (69.6%) subjects belonged to the unsuccessful group (P = 0.017). Changes between ATA1 and ATA2 levels did not differ significantly in both the groups (P = 0.062). Tg1 <10 mg/L was found in 26 (57.8%) subjects with successful therapy (P = 0.037). Multivariate analysis showed ATA2 and Tg1 as the independent factors for the success of ablation therapy (P = 0.007 and 0.015). Adjusted odds ratio of postablation ATA was 5.379 [95% confidence interval (CI) 1.590 to 18.203] and preablation Tg was 5.822 (95% CI 1.418 to 23.902). ATA levels at 6–12 months after ablation, by considering the preablation Tg levels, is a useful marker to determine successful ablation therapy in WDTC patients with low serum Tg. Changes in serum ATA levels, although not statistically significant, can provide additional information about the course of the disease.