Cargando…
Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion
Three cases of metabolic bone disease in the setting of metastatic neuroendocrine tumor (NET) are illustrated with associated etiopathologies. One of these cases harbored mixed lesions in the form of vertebral metastasis (biopsy proven) while the other skeletal lesions were caused due to metabolic...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314667/ https://www.ncbi.nlm.nih.gov/pubmed/28217023 http://dx.doi.org/10.4103/1450-1147.172307 |
_version_ | 1782508559946219520 |
---|---|
author | Ranade, Rohit Basu, Sandip |
author_facet | Ranade, Rohit Basu, Sandip |
author_sort | Ranade, Rohit |
collection | PubMed |
description | Three cases of metabolic bone disease in the setting of metastatic neuroendocrine tumor (NET) are illustrated with associated etiopathologies. One of these cases harbored mixed lesions in the form of vertebral metastasis (biopsy proven) while the other skeletal lesions were caused due to metabolic bone disease related to multiple parathyroid adenomas. While the metastatic lesion was positive on 68Ga-DOTATATE positron emission tomography-computed tomography (PET-CT), the lesions of metabolic bone disease were negative and the 18F-fluoride PET-CT demonstrated the features of metabolic bone scan. Similar picture of metabolic bone disease [18-sodium fluoride (18NaF)/68Ga-DOTATATE mismatch] was documented in the other two patients, while fluorodeoxyglucose (FDG)-PET-CT was variably positive, primarily showing tracer uptake in the metabolic skeletal lesions of the patient with hypersecretion of parathyroid hormone-related protein (PTHrP) by the underlying tumor. Discordance between 18NaF PET-CT and 68Ga-DOTATATE PET-CT serves as a good marker for identification of metabolic bone disease and diagnosing such a clinical entity. In a patient of NET with metabolic bone disease and hypercalcemia, thus, two causes need to be considered: (i) Coexisting parathyroid adenoma in multiple endocrine neoplasia type I (MEN-I) syndrome and (ii) humoral hypercalcemia of malignancy (HHM) related to hypersecretion of PTHrP by the tumor. The correct diagnosis of metabolic bone disease in metastatic NET can alter the management substantially. Interestingly, peptide receptor radionuclide therapy (PRRT) can emerge as a very promising treatment modality in patients of metabolic bone disease caused by HHM in the setting of NET. |
format | Online Article Text |
id | pubmed-5314667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53146672017-02-17 Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion Ranade, Rohit Basu, Sandip World J Nucl Med Case Report Three cases of metabolic bone disease in the setting of metastatic neuroendocrine tumor (NET) are illustrated with associated etiopathologies. One of these cases harbored mixed lesions in the form of vertebral metastasis (biopsy proven) while the other skeletal lesions were caused due to metabolic bone disease related to multiple parathyroid adenomas. While the metastatic lesion was positive on 68Ga-DOTATATE positron emission tomography-computed tomography (PET-CT), the lesions of metabolic bone disease were negative and the 18F-fluoride PET-CT demonstrated the features of metabolic bone scan. Similar picture of metabolic bone disease [18-sodium fluoride (18NaF)/68Ga-DOTATATE mismatch] was documented in the other two patients, while fluorodeoxyglucose (FDG)-PET-CT was variably positive, primarily showing tracer uptake in the metabolic skeletal lesions of the patient with hypersecretion of parathyroid hormone-related protein (PTHrP) by the underlying tumor. Discordance between 18NaF PET-CT and 68Ga-DOTATATE PET-CT serves as a good marker for identification of metabolic bone disease and diagnosing such a clinical entity. In a patient of NET with metabolic bone disease and hypercalcemia, thus, two causes need to be considered: (i) Coexisting parathyroid adenoma in multiple endocrine neoplasia type I (MEN-I) syndrome and (ii) humoral hypercalcemia of malignancy (HHM) related to hypersecretion of PTHrP by the tumor. The correct diagnosis of metabolic bone disease in metastatic NET can alter the management substantially. Interestingly, peptide receptor radionuclide therapy (PRRT) can emerge as a very promising treatment modality in patients of metabolic bone disease caused by HHM in the setting of NET. Medknow Publications & Media Pvt Ltd 2017 /pmc/articles/PMC5314667/ /pubmed/28217023 http://dx.doi.org/10.4103/1450-1147.172307 Text en Copyright: © 2017 World Journal of Nuclear Medicine http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Case Report Ranade, Rohit Basu, Sandip Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title | Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title_full | Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title_fullStr | Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title_full_unstemmed | Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title_short | Metabolic Bone Disease in the Context of Metastatic Neuroendocrine Tumor: Differentiation from Skeletal Metastasis, the Molecular PET–CT Imaging Features, and Exploring the Possible Etiopathologies Including Parathyroid Adenoma (MEN1) and Paraneoplastic Humoral Hypercalcemia of Malignancy Due to PTHrP Hypersecretion |
title_sort | metabolic bone disease in the context of metastatic neuroendocrine tumor: differentiation from skeletal metastasis, the molecular pet–ct imaging features, and exploring the possible etiopathologies including parathyroid adenoma (men1) and paraneoplastic humoral hypercalcemia of malignancy due to pthrp hypersecretion |
topic | Case Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314667/ https://www.ncbi.nlm.nih.gov/pubmed/28217023 http://dx.doi.org/10.4103/1450-1147.172307 |
work_keys_str_mv | AT ranaderohit metabolicbonediseaseinthecontextofmetastaticneuroendocrinetumordifferentiationfromskeletalmetastasisthemolecularpetctimagingfeaturesandexploringthepossibleetiopathologiesincludingparathyroidadenomamen1andparaneoplastichumoralhypercalcemiaofmalignancydueto AT basusandip metabolicbonediseaseinthecontextofmetastaticneuroendocrinetumordifferentiationfromskeletalmetastasisthemolecularpetctimagingfeaturesandexploringthepossibleetiopathologiesincludingparathyroidadenomamen1andparaneoplastichumoralhypercalcemiaofmalignancydueto |