Cargando…

High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities

Adaptive cellular stress responses are paramount in the healthy control of cell and tissue homeostasis and generally activated during toxicity in a chemical-specific manner. Here, we established a platform containing a panel of distinct adaptive stress response reporter cell lines based on BAC-trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Wink, Steven, Hiemstra, Steven, Herpers, Bram, van de Water, Bob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316409/
https://www.ncbi.nlm.nih.gov/pubmed/27358234
http://dx.doi.org/10.1007/s00204-016-1781-0
Descripción
Sumario:Adaptive cellular stress responses are paramount in the healthy control of cell and tissue homeostasis and generally activated during toxicity in a chemical-specific manner. Here, we established a platform containing a panel of distinct adaptive stress response reporter cell lines based on BAC-transgenomics GFP tagging in HepG2 cells. Our current panel of eleven BAC-GFP HepG2 reporters together contains (1) upstream sensors, (2) downstream transcription factors and (3) their respective target genes, representing the oxidative stress response pathway (Keap1/Nrf2/Srxn1), the unfolded protein response in the endoplasmic reticulum (Xbp1/Atf4/BiP/Chop) and the DNA damage response (53bp1/p53/p21). Using automated confocal imaging and quantitative single-cell image analysis, we established that all reporters allowed the time-resolved, sensitive and mode-of-action-specific activation of the individual BAC-GFP reporter cell lines as defined by a panel of pathway-specific training compounds. Implementing the temporal pathway activity information increased the discrimination of training compounds. For a set of >30 hepatotoxicants, the induction of Srxn1, BiP, Chop and p21 BAC-GFP reporters correlated strongly with the transcriptional responses observed in cryopreserved primary human hepatocytes. Together, our data indicate that a phenotypic adaptive stress response profiling platform will allow a high throughput and time-resolved classification of chemical-induced stress responses, thus assisting in the future mechanism-based safety assessment of chemicals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00204-016-1781-0) contains supplementary material, which is available to authorized users.