Cargando…
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Outp...
Autores principales: | Barba, Lida, Rodríguez, Nibaldo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316464/ https://www.ncbi.nlm.nih.gov/pubmed/28261267 http://dx.doi.org/10.1155/2017/7951395 |
Ejemplares similares
-
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
por: Barba, Lida, et al.
Publicado: (2014) -
Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models
por: Ming, Wei, et al.
Publicado: (2014) -
An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load Forecasting (†)
por: Jung, Seungmin, et al.
Publicado: (2021) -
LLM Multimodal Traffic Accident Forecasting
por: de Zarzà, I., et al.
Publicado: (2023) -
Traffic accidents in Iran, a decade of progress but still challenges ahead
por: Lankarani, Kamran B, et al.
Publicado: (2014)