Cargando…
Accumulation of foreign polypeptides to rice seed protein body type I using prolamin portion sequences
KEY MESSAGE: Rice prolamins are accumulated in endoplasmic reticulum (ER)-derived proteins bodies, although conserved sequences retained in ER are not confirmed. We investigated portion sequences of prolamins that must accumulate in PB-Is. ABSTRACT: Rice seed prolamins are accumulated in endoplasmic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316557/ https://www.ncbi.nlm.nih.gov/pubmed/28028608 http://dx.doi.org/10.1007/s00299-016-2097-5 |
Sumario: | KEY MESSAGE: Rice prolamins are accumulated in endoplasmic reticulum (ER)-derived proteins bodies, although conserved sequences retained in ER are not confirmed. We investigated portion sequences of prolamins that must accumulate in PB-Is. ABSTRACT: Rice seed prolamins are accumulated in endoplasmic reticulum (ER)-derived protein body type I (PB-I), but ER retention sequences in rice prolamin polypeptides have not been confirmed. Here we investigated the lengths of the prolamin portion sequences required for accumulation in PB-Is. Of the rice prolamins, we compared 13a and 13b prolamins because the amino acid sequences of these prolamins are quite similar except for the presence or absence of Cys-residues. We also generated and analyzed transgenic rice expressing several prolamin portion sequence-GFP fusion proteins. We observed that in 13a prolamin, when the portion sequences were extended more than the 68th amino acid residue from the initiating methionine, the prolamin portion sequence-GFP fusion proteins were accumulated in PB-Is. In 13b prolamin, when the portion sequences were extended by more than the 82nd amino acid residue from the initiating methionine, the prolamin portion sequence-GFP fusion proteins were accumulated in PB-Is. When those fusion proteins were extracted under non-reduced or reduced conditions, the 13a prolamin portion sequence-GFP fusion proteins in PB-Is were soluble under only the reduced condition. In contrast, 13b prolamin portion sequence-GFP fusion proteins were soluble under both non-reduced and reduced conditions. These results suggest that the accumulation of 13a prolamin in PB-Is is associated with the formation of disulfide bonds and/or hydrophobicity in 13a prolamin polypeptide, whereas the accumulation of 13b prolamin in PB-Is was less involved in the formation of disulfide bonds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00299-016-2097-5) contains supplementary material, which is available to authorized users. |
---|