Cargando…

Universality of quantum computation with cluster states and (X, Y)-plane measurements

Measurement-based quantum computing (MBQC) is a model of quantum computation where quantum information is coherently processed by means of projective measurements on highly entangled states. Following the introduction of MBQC, cluster states have been studied extensively both from the theoretical an...

Descripción completa

Detalles Bibliográficos
Autores principales: Mantri, Atul, Demarie, Tommaso F., Fitzsimons, Joseph F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316959/
https://www.ncbi.nlm.nih.gov/pubmed/28216652
http://dx.doi.org/10.1038/srep42861
Descripción
Sumario:Measurement-based quantum computing (MBQC) is a model of quantum computation where quantum information is coherently processed by means of projective measurements on highly entangled states. Following the introduction of MBQC, cluster states have been studied extensively both from the theoretical and experimental point of view. Indeed, the study of MBQC was catalysed by the realisation that cluster states are universal for MBQC with (X, Y)-plane and Z measurements. Here we examine the question of whether the requirement for Z measurements can be dropped while maintaining universality. We answer this question in the affirmative by showing that universality is possible in this scenario.