Cargando…
Characteristics and Validation Techniques for PCA-Based Gene-Expression Signatures
Background. Many gene-expression signatures exist for describing the biological state of profiled tumors. Principal Component Analysis (PCA) can be used to summarize a gene signature into a single score. Our hypothesis is that gene signatures can be validated when applied to new datasets, using inhe...
Autores principales: | Berglund, Anders E., Welsh, Eric A., Eschrich, Steven A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317117/ https://www.ncbi.nlm.nih.gov/pubmed/28265563 http://dx.doi.org/10.1155/2017/2354564 |
Ejemplares similares
-
Iterative rank-order normalization of gene expression microarray data
por: Welsh, Eric A, et al.
Publicado: (2013) -
Robust PCA based method for discovering differentially expressed genes
por: Liu, Jin-Xing, et al.
Publicado: (2013) -
Techniques to produce and evaluate realistic multivariate synthetic data
por: Heine, John, et al.
Publicado: (2023) -
Integrating gene expression and GO classification for PCA by preclustering
por: De Haan, Jorn R, et al.
Publicado: (2010) -
Evaluating somatic tumor mutation detection without matched normal samples
por: Teer, Jamie K., et al.
Publicado: (2017)