Cargando…
AEG-1 is associated with hypoxia-induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF-1alpha/MDR-1 pathway
Hypoxia is a common characteristic of hepatocellular carcinoma (HCC) associated with reduced response to chemotherapy, thus increasing the probability of tumor recurrence. Astrocyte elevated gene-1 (AEG-1) has been involved in a wide array of cancer progression including proliferation, chemoresistan...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5318678/ https://www.ncbi.nlm.nih.gov/pubmed/28337106 http://dx.doi.org/10.17179/excli2016-694 |
Sumario: | Hypoxia is a common characteristic of hepatocellular carcinoma (HCC) associated with reduced response to chemotherapy, thus increasing the probability of tumor recurrence. Astrocyte elevated gene-1 (AEG-1) has been involved in a wide array of cancer progression including proliferation, chemoresistance, angiogenesis and metastasis, but its effect on HCC chemoresistance induced by hypoxia is unclear. In this study, expression of AEG-1 and multiple drug resistance (MDR-1) were examined in HCC using immunohistochemical staining and RT-PCR. Furthermore, their expression levels were detected in HCC HepG2 cells in normoxia or hypoxia via RT-PCR and Western blot assays. Specific shRNAs were used to silence AEG-1 expression in HepG2 cells. Results showed AEG-1 and MDR-1 expression were higher in HCC tissues than in adjacent normal tissues. Incubation of HepG2 cells in hypoxia increased expression of AEG-1 and MDR-1, compared to incubation in normoxia. Exposure to hypoxia blunted sensitivity of HepG2 cells to Adriamycin, 5-fluorouracil and cis-platinum, as evidenced by modest alterations in cell viability and apoptosis rate, however the sensitivity was elevated with AEG-1 knockdown. PI3K/AKT/HIF-1/MDR-1 pathway was attenuated following AEG-1 knockdown in hypoxia. Based on these data, it was suggested that AEG-1 is associated with hypoxia-induced hepatocellular carcinoma chemoresistance via regulating PI3K/AKT/HIF-1/MDR-1 pathway. This study uncovered a novel potential target for development of an effective therapy against hypoxia-induced HCC chemoresistance. |
---|