Cargando…

Long-term intake of saccharin decreases post-absortive energy expenditure at rest and is associated to greater weight gain relative to sucrose in wistar rats

BACKGROUND: Non-nutritive sweeteners (NNS) have been associated with increased prevalence of obesity. In previous studies, we demonstrated that saccharin could induce an increase in weight gain either when compared to sucrose or to a non-sweetened control at a similar total caloric intake. These dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto, Denise Entrudo, Foletto, Kelly Carraro, Nunes, Ramiro Barcos, Lago, Pedro Dal, Bertoluci, Marcello Casaccia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319070/
https://www.ncbi.nlm.nih.gov/pubmed/28239405
http://dx.doi.org/10.1186/s12986-017-0165-7
Descripción
Sumario:BACKGROUND: Non-nutritive sweeteners (NNS) have been associated with increased prevalence of obesity. In previous studies, we demonstrated that saccharin could induce an increase in weight gain either when compared to sucrose or to a non-sweetened control at a similar total caloric intake. These data raised the hypothesis that reduced energy expenditure (EE) could be a potential mechanism explaining greater weight gain with saccharin use in rats. The aim of the present study was to compare long-term energy expenditure at rest between rats using saccharin or sucrose and correlate it with weight gain.  METHODS: In the present study, we examine the potential impact of saccharin compared to sucrose in the EE of Wistar rats. In a controlled experiment of 17 weeks, 24 Wistar rats were divided into 2 groups: saccharin-sweetened yogurt (SAC) or sucrose-sweetened yogurt (SUC), plus a free chow diet. Only rats that consumed at least 70% of the offered yogurt were included. EE (kcal/day) was determined at rest through open circuit indirect calorimetry system in the early post-absorptive period with determinations of both VO(2) consumption and CO(2) production. Measurements were evaluated at baseline, 5 and 12 weeks of dietary intervention. Weight gain, caloric intake (from yogurt, from chow and total) were determined weekly. RESULTS: Body weight and EE were similar between groups at baseline: (p = .35) and (p = .67) respectively. At the end of the study, SAC increased total weight gain significantly more in relation to SUC (p = .03). Cumulative total caloric intake (yogurt plus chow) was similar between groups during the whole period (p = .54). At 12 weeks, the EE was smaller in SAC compared to SUC (p = .009). Considering both groups, there was a strong negative correlation between total weight gain and change in EE observed [r(20) = −.61, p = .003]. However, when analyzing the groups separately we found that SUC maintained this inverse correlation [r(8) = −.68, p = .03], while SAC did not [r(10) = −.33, p = .29]. CONCLUSION: These data support the hypothesis that long-term use of saccharin may blunt post-absorptive EE at rest in Wistar rats, which is related to weight gain. On the other hand, long-term sucrose intake can increase energy expenditure in rats. This effect combined can explain, at least partially, the weight gain increases associated to saccharin in relation to sucrose in these animals.