Cargando…
Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product qua...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319170/ https://www.ncbi.nlm.nih.gov/pubmed/28219347 http://dx.doi.org/10.1186/s12864-017-3557-1 |
_version_ | 1782509333686255616 |
---|---|
author | Abdelrahman, Hisham ElHady, Mohamed Alcivar-Warren, Acacia Allen, Standish Al-Tobasei, Rafet Bao, Lisui Beck, Ben Blackburn, Harvey Bosworth, Brian Buchanan, John Chappell, Jesse Daniels, William Dong, Sheng Dunham, Rex Durland, Evan Elaswad, Ahmed Gomez-Chiarri, Marta Gosh, Kamal Guo, Ximing Hackett, Perry Hanson, Terry Hedgecock, Dennis Howard, Tiffany Holland, Leigh Jackson, Molly Jin, Yulin Kahlil, Karim Kocher, Thomas Leeds, Tim Li, Ning Lindsey, Lauren Liu, Shikai Liu, Zhanjiang Martin, Kyle Novriadi, Romi Odin, Ramjie Palti, Yniv Peatman, Eric Proestou, Dina Qin, Guyu Reading, Benjamin Rexroad, Caird Roberts, Steven Salem, Mohamed Severin, Andrew Shi, Huitong Shoemaker, Craig Stiles, Sheila Tan, Suxu Tang, Kathy F. J. Thongda, Wilawan Tiersch, Terrence Tomasso, Joseph Prabowo, Wendy Tri Vallejo, Roger van der Steen, Hein Vo, Khoi Waldbieser, Geoff Wang, Hanping Wang, Xiaozhu Xiang, Jianhai Yang, Yujia Yant, Roger Yuan, Zihao Zeng, Qifan Zhou, Tao |
author_facet | Abdelrahman, Hisham ElHady, Mohamed Alcivar-Warren, Acacia Allen, Standish Al-Tobasei, Rafet Bao, Lisui Beck, Ben Blackburn, Harvey Bosworth, Brian Buchanan, John Chappell, Jesse Daniels, William Dong, Sheng Dunham, Rex Durland, Evan Elaswad, Ahmed Gomez-Chiarri, Marta Gosh, Kamal Guo, Ximing Hackett, Perry Hanson, Terry Hedgecock, Dennis Howard, Tiffany Holland, Leigh Jackson, Molly Jin, Yulin Kahlil, Karim Kocher, Thomas Leeds, Tim Li, Ning Lindsey, Lauren Liu, Shikai Liu, Zhanjiang Martin, Kyle Novriadi, Romi Odin, Ramjie Palti, Yniv Peatman, Eric Proestou, Dina Qin, Guyu Reading, Benjamin Rexroad, Caird Roberts, Steven Salem, Mohamed Severin, Andrew Shi, Huitong Shoemaker, Craig Stiles, Sheila Tan, Suxu Tang, Kathy F. J. Thongda, Wilawan Tiersch, Terrence Tomasso, Joseph Prabowo, Wendy Tri Vallejo, Roger van der Steen, Hein Vo, Khoi Waldbieser, Geoff Wang, Hanping Wang, Xiaozhu Xiang, Jianhai Yang, Yujia Yant, Roger Yuan, Zihao Zeng, Qifan Zhou, Tao |
collection | PubMed |
description | Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries. Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States. |
format | Online Article Text |
id | pubmed-5319170 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53191702017-02-24 Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research Abdelrahman, Hisham ElHady, Mohamed Alcivar-Warren, Acacia Allen, Standish Al-Tobasei, Rafet Bao, Lisui Beck, Ben Blackburn, Harvey Bosworth, Brian Buchanan, John Chappell, Jesse Daniels, William Dong, Sheng Dunham, Rex Durland, Evan Elaswad, Ahmed Gomez-Chiarri, Marta Gosh, Kamal Guo, Ximing Hackett, Perry Hanson, Terry Hedgecock, Dennis Howard, Tiffany Holland, Leigh Jackson, Molly Jin, Yulin Kahlil, Karim Kocher, Thomas Leeds, Tim Li, Ning Lindsey, Lauren Liu, Shikai Liu, Zhanjiang Martin, Kyle Novriadi, Romi Odin, Ramjie Palti, Yniv Peatman, Eric Proestou, Dina Qin, Guyu Reading, Benjamin Rexroad, Caird Roberts, Steven Salem, Mohamed Severin, Andrew Shi, Huitong Shoemaker, Craig Stiles, Sheila Tan, Suxu Tang, Kathy F. J. Thongda, Wilawan Tiersch, Terrence Tomasso, Joseph Prabowo, Wendy Tri Vallejo, Roger van der Steen, Hein Vo, Khoi Waldbieser, Geoff Wang, Hanping Wang, Xiaozhu Xiang, Jianhai Yang, Yujia Yant, Roger Yuan, Zihao Zeng, Qifan Zhou, Tao BMC Genomics Commentary Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries. Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States. BioMed Central 2017-02-20 /pmc/articles/PMC5319170/ /pubmed/28219347 http://dx.doi.org/10.1186/s12864-017-3557-1 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Commentary Abdelrahman, Hisham ElHady, Mohamed Alcivar-Warren, Acacia Allen, Standish Al-Tobasei, Rafet Bao, Lisui Beck, Ben Blackburn, Harvey Bosworth, Brian Buchanan, John Chappell, Jesse Daniels, William Dong, Sheng Dunham, Rex Durland, Evan Elaswad, Ahmed Gomez-Chiarri, Marta Gosh, Kamal Guo, Ximing Hackett, Perry Hanson, Terry Hedgecock, Dennis Howard, Tiffany Holland, Leigh Jackson, Molly Jin, Yulin Kahlil, Karim Kocher, Thomas Leeds, Tim Li, Ning Lindsey, Lauren Liu, Shikai Liu, Zhanjiang Martin, Kyle Novriadi, Romi Odin, Ramjie Palti, Yniv Peatman, Eric Proestou, Dina Qin, Guyu Reading, Benjamin Rexroad, Caird Roberts, Steven Salem, Mohamed Severin, Andrew Shi, Huitong Shoemaker, Craig Stiles, Sheila Tan, Suxu Tang, Kathy F. J. Thongda, Wilawan Tiersch, Terrence Tomasso, Joseph Prabowo, Wendy Tri Vallejo, Roger van der Steen, Hein Vo, Khoi Waldbieser, Geoff Wang, Hanping Wang, Xiaozhu Xiang, Jianhai Yang, Yujia Yant, Roger Yuan, Zihao Zeng, Qifan Zhou, Tao Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title | Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title_full | Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title_fullStr | Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title_full_unstemmed | Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title_short | Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research |
title_sort | aquaculture genomics, genetics and breeding in the united states: current status, challenges, and priorities for future research |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319170/ https://www.ncbi.nlm.nih.gov/pubmed/28219347 http://dx.doi.org/10.1186/s12864-017-3557-1 |
work_keys_str_mv | AT aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT abdelrahmanhisham aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT elhadymohamed aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT alcivarwarrenacacia aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT allenstandish aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT altobaseirafet aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT baolisui aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT beckben aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT blackburnharvey aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT bosworthbrian aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT buchananjohn aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT chappelljesse aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT danielswilliam aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT dongsheng aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT dunhamrex aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT durlandevan aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT elaswadahmed aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT gomezchiarrimarta aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT goshkamal aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT guoximing aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT hackettperry aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT hansonterry aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT hedgecockdennis aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT howardtiffany aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT hollandleigh aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT jacksonmolly aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT jinyulin aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT kahlilkarim aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT kocherthomas aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT leedstim aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT lining aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT lindseylauren aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT liushikai aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT liuzhanjiang aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT martinkyle aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT novriadiromi aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT odinramjie aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT paltiyniv aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT peatmaneric aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT proestoudina aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT qinguyu aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT readingbenjamin aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT rexroadcaird aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT robertssteven aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT salemmohamed aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT severinandrew aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT shihuitong aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT shoemakercraig aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT stilessheila aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT tansuxu aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT tangkathyfj aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT thongdawilawan aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT tierschterrence aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT tomassojoseph aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT prabowowendytri aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT vallejoroger aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT vandersteenhein aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT vokhoi aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT waldbiesergeoff aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT wanghanping aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT wangxiaozhu aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT xiangjianhai aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT yangyujia aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT yantroger aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT yuanzihao aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT zengqifan aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch AT zhoutao aquaculturegenomicsgeneticsandbreedingintheunitedstatescurrentstatuschallengesandprioritiesforfutureresearch |