Cargando…
Reduction of Space Groups to Subgroups by Homogeneous Strain
It is assumed that the symmetry elements possessed by a strained crystal will be those common to the unstrained crystal and to the macroscopic state of strain. This principle has been applied to show all of the possible subgroups to which a given space group can be lowered by homogeneous strain for...
Autores principales: | Peiser, H. S., Wachtman, J. B., Dickson, R. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1963
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319803/ https://www.ncbi.nlm.nih.gov/pubmed/31580588 http://dx.doi.org/10.6028/jres.067A.042 |
Ejemplares similares
-
Symmetry Splitting of Equivalent Sites in Oxide Crystals and Related Mechanical Effects
por: Wachtman, J. B., et al.
Publicado: (1963) -
Reductive subgroups of exceptional algebraic groups
por: Liebeck, Martin W, et al.
Publicado: (1996) -
An introduction to Lie groups and the geometry of homogeneous spaces
por: Arvanitoyeorgos, Andreas
Publicado: (2003) -
Continuous cohomology, discrete subgroups, and representations of reductive groups
por: Borel, Armand, et al.
Publicado: (1980) -
Infinite dimensional homogeneous reductive spaces and finite index conditional expectations
por: Andruchow, E, et al.
Publicado: (1995)