Cargando…

Increased glucocorticoid receptor expression in sepsis is related to heat shock proteins, cytokines, and cortisol and is associated with increased mortality

BACKGROUND: The purposes of this study are to examine if the human glucocorticoid receptor (hGR) isoform-α mRNA and hGR protein expressions are deficient in the acute phase of sepsis (S) compared to systemic inflammatory response syndrome (SIRS) and healthy subjects (H) and to evaluate if the hGRα a...

Descripción completa

Detalles Bibliográficos
Autores principales: Vardas, Konstantinos, Ilia, Stavroula, Sertedaki, Amalia, Charmandari, Evangelia, Briassouli, Efrossini, Goukos, Dimitris, Apostolou, Kleovoulos, Psarra, Katerina, Botoula, Efthimia, Tsagarakis, Stylianos, Magira, Eleni, Routsi, Christina, Stratakis, Constantine A., Nanas, Serafim, Briassoulis, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319939/
https://www.ncbi.nlm.nih.gov/pubmed/28224564
http://dx.doi.org/10.1186/s40635-017-0123-8
Descripción
Sumario:BACKGROUND: The purposes of this study are to examine if the human glucocorticoid receptor (hGR) isoform-α mRNA and hGR protein expressions are deficient in the acute phase of sepsis (S) compared to systemic inflammatory response syndrome (SIRS) and healthy subjects (H) and to evaluate if the hGRα and hGR alterations are associated with cortisol changes and if they are related to (1) extracellular and intracellular heat shock proteins (HSP) 72 and 90α; (2) ACTH, prolactin, and interleukins (ILs); and (3) outcome. METHODS: Patients consecutively admitted to a university hospital intensive care unit (ICU) with S (n = 48) or SIRS (n = 40) were enrolled in the study. Thirty-five H were also included. Total mRNA was isolated from peripheral blood samples and cDNA was prepared. RT-PCR was performed. Intracellular hGR and HSP expression in monocytes and/or neutrophils was evaluated using four-colour flow cytometry. Serum prolactin, ACTH, and cortisol concentrations were also measured. ELISA was used to evaluate serum ILs and extracellular (e) HSPs (eHSP72, eHSP90α). RESULTS: hGR protein was higher in S compared to H and SIRS; hGRα mRNA was higher in S compared to H (p < 0.05). In sepsis, hGR protein and eHSP72 were higher among non-survivors compared to survivors (p < 0.05). The hGR MFI and hGRα mRNA fold changes were significantly related to each other (r (s) = 0.64, p < 0.001). Monocyte hGR protein expression was positively correlated with extracellular and intracellular HSPs, cortisol, and ILs and negatively to organ dysfunction (p < 0.05). HSPs, hGR, and cortisol were able to discriminate sepsis from SIRS (AUROC > 0.85, p < 0.05). In sepsis, monocyte-hGR protein and eHSP72 were strong predictors of mortality (AUROC > 0.95, p < 0.04). CONCLUSIONS: Acute-phase sepsis is associated with increased hGR expression and cortisol concentrations, possibly implying no need for exogenous steroids. At this stage, hGR is able to predict sepsis and outcome and is related to stress-activated bio-molecules and organ dysfunction.