Cargando…

Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage

This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorit...

Descripción completa

Detalles Bibliográficos
Autores principales: Aggarwal, Priya, Shrivastava, Parth, Kabra, Tanay, Gupta, Anubha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319953/
https://www.ncbi.nlm.nih.gov/pubmed/28074352
http://dx.doi.org/10.1007/s40708-016-0059-x
Descripción
Sumario:This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l (1) minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.