Cargando…
Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage
This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319953/ https://www.ncbi.nlm.nih.gov/pubmed/28074352 http://dx.doi.org/10.1007/s40708-016-0059-x |
Sumario: | This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l (1) minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results. |
---|