Cargando…
Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage
This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319953/ https://www.ncbi.nlm.nih.gov/pubmed/28074352 http://dx.doi.org/10.1007/s40708-016-0059-x |
_version_ | 1782509443414491136 |
---|---|
author | Aggarwal, Priya Shrivastava, Parth Kabra, Tanay Gupta, Anubha |
author_facet | Aggarwal, Priya Shrivastava, Parth Kabra, Tanay Gupta, Anubha |
author_sort | Aggarwal, Priya |
collection | PubMed |
description | This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l (1) minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results. |
format | Online Article Text |
id | pubmed-5319953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-53199532017-03-07 Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage Aggarwal, Priya Shrivastava, Parth Kabra, Tanay Gupta, Anubha Brain Inform Article This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l (1) minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results. Springer Berlin Heidelberg 2017-01-10 /pmc/articles/PMC5319953/ /pubmed/28074352 http://dx.doi.org/10.1007/s40708-016-0059-x Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Aggarwal, Priya Shrivastava, Parth Kabra, Tanay Gupta, Anubha Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title | Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title_full | Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title_fullStr | Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title_full_unstemmed | Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title_short | Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage |
title_sort | optshrink lr + s: accelerated fmri reconstruction using non-convex optimal singular value shrinkage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319953/ https://www.ncbi.nlm.nih.gov/pubmed/28074352 http://dx.doi.org/10.1007/s40708-016-0059-x |
work_keys_str_mv | AT aggarwalpriya optshrinklrsacceleratedfmrireconstructionusingnonconvexoptimalsingularvalueshrinkage AT shrivastavaparth optshrinklrsacceleratedfmrireconstructionusingnonconvexoptimalsingularvalueshrinkage AT kabratanay optshrinklrsacceleratedfmrireconstructionusingnonconvexoptimalsingularvalueshrinkage AT guptaanubha optshrinklrsacceleratedfmrireconstructionusingnonconvexoptimalsingularvalueshrinkage |