Cargando…
Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage
This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorit...
Autores principales: | Aggarwal, Priya, Shrivastava, Parth, Kabra, Tanay, Gupta, Anubha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319953/ https://www.ncbi.nlm.nih.gov/pubmed/28074352 http://dx.doi.org/10.1007/s40708-016-0059-x |
Ejemplares similares
-
On smoothness and singularities of convex hypersurfaces
por: Burago, Yu D, et al.
Publicado: (1995) -
Minimal Solution of Singular LR Fuzzy Linear Systems
por: Nikuie, M., et al.
Publicado: (2014) -
Prediction of Brain Connectivity Map in Resting-State fMRI Data Using Shrinkage Estimator
por: Nazari, Atiye, et al.
Publicado: (2019) -
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
por: Han, Paul Kyu, et al.
Publicado: (2015) -
Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors
por: Wu, Yunan, et al.
Publicado: (2020)