Cargando…
Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus
We used genomics to study the evolution of meticillin-resistant Staphylococcus aureus (MRSA) during a complex, protracted clinical infection. Preparing closed MRSA genomes from days 0 and 115 allowed us to precisely reconstruct all genetic changes that occurred. Twenty-three MRSA blood cultures were...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for General Microbiology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320569/ https://www.ncbi.nlm.nih.gov/pubmed/28348811 http://dx.doi.org/10.1099/mgen.0.000026 |
_version_ | 1782509563883290624 |
---|---|
author | Gao, Wei Monk, Ian R. Tobias, Nicholas J. Gladman, Simon L. Seemann, Torsten Stinear, Timothy P. Howden, Benjamin P. |
author_facet | Gao, Wei Monk, Ian R. Tobias, Nicholas J. Gladman, Simon L. Seemann, Torsten Stinear, Timothy P. Howden, Benjamin P. |
author_sort | Gao, Wei |
collection | PubMed |
description | We used genomics to study the evolution of meticillin-resistant Staphylococcus aureus (MRSA) during a complex, protracted clinical infection. Preparing closed MRSA genomes from days 0 and 115 allowed us to precisely reconstruct all genetic changes that occurred. Twenty-three MRSA blood cultures were also obtained during treatment, yielding 44 colony morphotypes that varied in size, haemolysis and antibiotic susceptibility. A subset of 15 isolates was sequenced and shown to harbour a total of 37 sequence polymorphisms. Eighty per cent of all mutations occurred from day 45 onwards, which coincided with the appearance of discrete chromosome expansions, and concluded in the day 115 isolate with a 98 kb tandem DNA duplication. In all heterogeneous vancomycin-intermediate Staphylococcus aureus isolates, the chromosomal amplification spanned at least a 20 kb region that notably included mprF, a gene involved in resistance to antimicrobial peptides, and parC, an essential DNA replication gene with an unusual V463 codon insertion. Restoration of the chromosome after serial passage under non-selective growth was accompanied by increased susceptibility to antimicrobial peptide killing and reduced vancomycin resistance, two signature phenotypes that help explain the clinical persistence of this strain. Elevated expression of the V463 parC was deleterious to the cell and reduced colony size, but did not alter ciprofloxacin susceptibility. In this study, we identified large DNA expansions as a clinically relevant mechanism of S. aureus resistance and persistence, demonstrating the extent to which bacterial chromosomes remodel in the face of antibiotic and host immune pressures. |
format | Online Article Text |
id | pubmed-5320569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Society for General Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-53205692017-03-27 Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus Gao, Wei Monk, Ian R. Tobias, Nicholas J. Gladman, Simon L. Seemann, Torsten Stinear, Timothy P. Howden, Benjamin P. Microb Genom Research Paper We used genomics to study the evolution of meticillin-resistant Staphylococcus aureus (MRSA) during a complex, protracted clinical infection. Preparing closed MRSA genomes from days 0 and 115 allowed us to precisely reconstruct all genetic changes that occurred. Twenty-three MRSA blood cultures were also obtained during treatment, yielding 44 colony morphotypes that varied in size, haemolysis and antibiotic susceptibility. A subset of 15 isolates was sequenced and shown to harbour a total of 37 sequence polymorphisms. Eighty per cent of all mutations occurred from day 45 onwards, which coincided with the appearance of discrete chromosome expansions, and concluded in the day 115 isolate with a 98 kb tandem DNA duplication. In all heterogeneous vancomycin-intermediate Staphylococcus aureus isolates, the chromosomal amplification spanned at least a 20 kb region that notably included mprF, a gene involved in resistance to antimicrobial peptides, and parC, an essential DNA replication gene with an unusual V463 codon insertion. Restoration of the chromosome after serial passage under non-selective growth was accompanied by increased susceptibility to antimicrobial peptide killing and reduced vancomycin resistance, two signature phenotypes that help explain the clinical persistence of this strain. Elevated expression of the V463 parC was deleterious to the cell and reduced colony size, but did not alter ciprofloxacin susceptibility. In this study, we identified large DNA expansions as a clinically relevant mechanism of S. aureus resistance and persistence, demonstrating the extent to which bacterial chromosomes remodel in the face of antibiotic and host immune pressures. Society for General Microbiology 2015-08-03 /pmc/articles/PMC5320569/ /pubmed/28348811 http://dx.doi.org/10.1099/mgen.0.000026 Text en © 2015 The Authors http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Research Paper Gao, Wei Monk, Ian R. Tobias, Nicholas J. Gladman, Simon L. Seemann, Torsten Stinear, Timothy P. Howden, Benjamin P. Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title | Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title_full | Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title_fullStr | Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title_full_unstemmed | Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title_short | Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus |
title_sort | large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant staphylococcus aureus |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320569/ https://www.ncbi.nlm.nih.gov/pubmed/28348811 http://dx.doi.org/10.1099/mgen.0.000026 |
work_keys_str_mv | AT gaowei largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT monkianr largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT tobiasnicholasj largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT gladmansimonl largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT seemanntorsten largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT stineartimothyp largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus AT howdenbenjaminp largetandemchromosomeexpansionsfacilitatenicheadaptationduringpersistentinfectionwithdrugresistantstaphylococcusaureus |