Cargando…

Bayesian identification of bacterial strains from sequencing data

Rapidly assaying the diversity of a bacterial species present in a sample obtained from a hospital patient or an environmental source has become possible after recent technological advances in DNA sequencing. For several applications it is important to accurately identify the presence and estimate r...

Descripción completa

Detalles Bibliográficos
Autores principales: Sankar, Aravind, Malone, Brandon, Bayliss, Sion C., Pascoe, Ben, Méric, Guillaume, Hitchings, Matthew D., Sheppard, Samuel K., Feil, Edward J., Corander, Jukka, Honkela, Antti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320594/
https://www.ncbi.nlm.nih.gov/pubmed/28348870
http://dx.doi.org/10.1099/mgen.0.000075
Descripción
Sumario:Rapidly assaying the diversity of a bacterial species present in a sample obtained from a hospital patient or an environmental source has become possible after recent technological advances in DNA sequencing. For several applications it is important to accurately identify the presence and estimate relative abundances of the target organisms from short sequence reads obtained from a sample. This task is particularly challenging when the set of interest includes very closely related organisms, such as different strains of pathogenic bacteria, which can vary considerably in terms of virulence, resistance and spread. Using advanced Bayesian statistical modelling and computation techniques we introduce a novel pipeline for bacterial identification that is shown to outperform the currently leading pipeline for this purpose. Our approach enables fast and accurate sequence-based identification of bacterial strains while using only modest computational resources. Hence it provides a useful tool for a wide spectrum of applications, including rapid clinical diagnostics to distinguish among closely related strains causing nosocomial infections. The software implementation is available at https://github.com/PROBIC/BIB.