Cargando…
epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data
The study of epigenetic heterogeneity at the level of individual cells and in whole populations is the key to understanding cellular differentiation, organismal development, and the evolution of cancer. We develop a statistical method, epiG, to infer and differentiate between different epi-allelic h...
Autores principales: | Vincent, Martin, Mundbjerg, Kamilla, Skou Pedersen, Jakob, Liang, Gangning, Jones, Peter A., Ørntoft, Torben Falck, Dalsgaard Sørensen, Karina, Wiuf, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5320668/ https://www.ncbi.nlm.nih.gov/pubmed/28222791 http://dx.doi.org/10.1186/s13059-017-1168-4 |
Ejemplares similares
-
Heterogeneous patterns of DNA methylation-based field effects in histologically normal prostate tissue from cancer patients
por: Møller, Mia, et al.
Publicado: (2017) -
Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX
por: Hanghøj, Kristian, et al.
Publicado: (2016) -
Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer
por: Zieger, Karsten, et al.
Publicado: (2009) -
EpiGe: A machine-learning strategy for rapid classification of medulloblastoma using PCR-based methyl-genotyping
por: Gómez-González, Soledad, et al.
Publicado: (2023) -
Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs
por: Legrand, Carine, et al.
Publicado: (2017)