Cargando…
DWCox: A density-weighted Cox model for outlier-robust prediction of prostate cancer survival
Reliable predictions on the risk and survival time of prostate cancer patients based on their clinical records can help guide their treatment and provide hints about the disease mechanism. The Cox regression is currently a commonly accepted approach for such tasks in clinical applications. More comp...
Autores principales: | Xiao, Jinfeng, Wang, Sheng, Shang, Jingbo, Lin, Henry, Xin, Doris, Ren, Xiang, Han, Jiawei, Peng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321125/ https://www.ncbi.nlm.nih.gov/pubmed/28299178 http://dx.doi.org/10.12688/f1000research.9434.1 |
Ejemplares similares
-
PhylteR: Efficient Identification of Outlier Sequences in Phylogenomic Datasets
por: Comte, Aurore, et al.
Publicado: (2023) -
An ensemble-based Cox proportional hazards regression framework for predicting survival in metastatic castration-resistant prostate cancer (mCRPC) patients
por: Meier, Richard, et al.
Publicado: (2016) -
Improved Graph Embedding for Robust Recognition with outliers
por: Li, Peiyang, et al.
Publicado: (2018) -
Robust-stein estimator for overcoming outliers and multicollinearity
por: Lukman, Adewale F., et al.
Publicado: (2023) -
Evaluating the effectiveness of population-based breast cancer service screening: an analysis of parsimonious patient survival information with the time-varying Cox model
por: Chang, Rene Wei-Jung, et al.
Publicado: (2022)