Cargando…

Environmental characteristics drive variation in Amazonian understorey bird assemblages

Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distribution...

Descripción completa

Detalles Bibliográficos
Autores principales: Menger, Juliana, Magnusson, William E., Anderson, Marti J., Schlegel, Martin, Pe’er, Guy, Henle, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321421/
https://www.ncbi.nlm.nih.gov/pubmed/28225774
http://dx.doi.org/10.1371/journal.pone.0171540
Descripción
Sumario:Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species.