Cargando…
Learning from data to design functional materials without inversion symmetry
Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover desig...
Autores principales: | Balachandran, Prasanna V., Young, Joshua, Lookman, Turab, Rondinelli, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321684/ https://www.ncbi.nlm.nih.gov/pubmed/28211456 http://dx.doi.org/10.1038/ncomms14282 |
Ejemplares similares
-
Materials Prediction via Classification Learning
por: Balachandran, Prasanna V., et al.
Publicado: (2015) -
Adaptive Strategies for Materials Design using Uncertainties
por: Balachandran, Prasanna V., et al.
Publicado: (2016) -
Accelerated search for materials with targeted properties by adaptive design
por: Xue, Dezhen, et al.
Publicado: (2016) -
Multi-objective Optimization for Materials Discovery via Adaptive Design
por: Gopakumar, Abhijith M., et al.
Publicado: (2018) -
Materials discovery and design: by means of data science and optimal learning
por: Lookman, Turab, et al.
Publicado: (2018)