Cargando…

An analysis of horseradish peroxidase enzyme for effluent treatment

The present study explains computational methods to design thermostable horseradish peroxidase enzyme using the crystal structure available from Protein Data Bank (PDB ID: 6ATJ). Multiple mutations were introduced to the original enzyme and developed a model by using Modeler9.14. After designing the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nunavath, Hanumalal, Banoth, Chandrasekhar, Talluri, Venkateswar Rao, Bhukya, Bhima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322315/
https://www.ncbi.nlm.nih.gov/pubmed/28293074
http://dx.doi.org/10.6026/97320630012318
Descripción
Sumario:The present study explains computational methods to design thermostable horseradish peroxidase enzyme using the crystal structure available from Protein Data Bank (PDB ID: 6ATJ). Multiple mutations were introduced to the original enzyme and developed a model by using Modeler9.14. After designing the model functional effect was confirmed in terms of protein ligand binding by molecular docking using Autodock 4.2. The implementation of modeling steps is demonstrated in the context of performing mutations for particular amino acid residue on the ligand pocket of the horseradish peroxidase, to derive the desired ligand binding properties. The docking investigation of modelled HRP with Quercetindihydroxide using Autodock 4.2 software that six amino acid residues, P139, H42, A31, L174, A38, and G169 are involved in hydrogen bonding. More importantly, it provides insight into understanding and properly interpreting the data produced by these methods. The 3D model was docked with Quercetindihydroxide (a known horseradish modulator) to understand molecular interactions at the active site region.