Cargando…

Dynamics of contextual modulation of perceived shape in human vision

In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the conte...

Descripción completa

Detalles Bibliográficos
Autores principales: Gheorghiu, Elena, Kingdom, Frederick A. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322363/
https://www.ncbi.nlm.nih.gov/pubmed/28230085
http://dx.doi.org/10.1038/srep43274
Descripción
Sumario:In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the context of the phenomenon known as the shape aftereffect. In the shape aftereffect, prolonged viewing, or adaptation to a particular contour’s shape causes a shift in the perceived shape of a subsequently viewed contour. Shape aftereffects are suppressed when the adaptor contour is surrounded by a texture of similarly-shaped contours, a surprising result given that the surround contours are all potential adaptors. Here we determine the motion and temporal properties of this form of contextual modulation. We varied the relative motion directions, speeds and temporal phases between the central adaptor contour and the surround texture and measured for each manipulation the degree to which the shape aftereffect was suppressed. Results indicate that contextual modulation of shape processing is selective to motion direction, temporal frequency and temporal phase. These selectivities are consistent with one aim of vision being to segregate contours that define objects from those that form textured surfaces.