Cargando…
The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change?
Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322406/ https://www.ncbi.nlm.nih.gov/pubmed/28250811 http://dx.doi.org/10.1111/eva.12447 |
_version_ | 1782509840805920768 |
---|---|
author | Chirgwin, Evatt Marshall, Dustin J. Sgrò, Carla M. Monro, Keyne |
author_facet | Chirgwin, Evatt Marshall, Dustin J. Sgrò, Carla M. Monro, Keyne |
author_sort | Chirgwin, Evatt |
collection | PubMed |
description | Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world. |
format | Online Article Text |
id | pubmed-5322406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53224062017-03-01 The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Chirgwin, Evatt Marshall, Dustin J. Sgrò, Carla M. Monro, Keyne Evol Appl Original Articles Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world. John Wiley and Sons Inc. 2016-12-20 /pmc/articles/PMC5322406/ /pubmed/28250811 http://dx.doi.org/10.1111/eva.12447 Text en © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Chirgwin, Evatt Marshall, Dustin J. Sgrò, Carla M. Monro, Keyne The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title | The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title_full | The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title_fullStr | The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title_full_unstemmed | The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title_short | The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? |
title_sort | other 96%: can neglected sources of fitness variation offer new insights into adaptation to global change? |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322406/ https://www.ncbi.nlm.nih.gov/pubmed/28250811 http://dx.doi.org/10.1111/eva.12447 |
work_keys_str_mv | AT chirgwinevatt theother96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT marshalldustinj theother96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT sgrocarlam theother96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT monrokeyne theother96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT chirgwinevatt other96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT marshalldustinj other96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT sgrocarlam other96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange AT monrokeyne other96canneglectedsourcesoffitnessvariationoffernewinsightsintoadaptationtoglobalchange |