Cargando…
Antioxidant response is a protective mechanism against nutrient deprivation in C. elegans
Animals often experience periods of nutrient deprivation; however, the molecular mechanisms by which animals survive starvation remain largely unknown. In the nematode Caenorhabditis elegans, the nuclear receptor DAF-12 acts as a dietary and environmental sensor to orchestrate diverse aspects of dev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322524/ https://www.ncbi.nlm.nih.gov/pubmed/28230214 http://dx.doi.org/10.1038/srep43547 |
Sumario: | Animals often experience periods of nutrient deprivation; however, the molecular mechanisms by which animals survive starvation remain largely unknown. In the nematode Caenorhabditis elegans, the nuclear receptor DAF-12 acts as a dietary and environmental sensor to orchestrate diverse aspects of development, metabolism, and reproduction. Recently, we have reported that DAF-12 together with co-repressor DIN-1S is required for starvation tolerance by promoting fat mobilization. In this report, we found that genetic inactivation of the DAF-12 signaling promoted the production of reactive oxygen species (ROS) during starvation. ROS mediated systemic necrosis, thereby inducing organismal death. The DAF-12/DIN-1S complex up-regulated the expression of antioxidant genes during starvation. The antioxidant enzyme GST-4 in turn suppressed ROS formation, thereby conferring worm survival. Our findings highlight the importance of antioxidant response in starvation tolerance and provide a novel insight into multiple organisms survive and adapt to periods of nutrient deprivation. |
---|