Cargando…
Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered prot...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322550/ https://www.ncbi.nlm.nih.gov/pubmed/25637221 http://dx.doi.org/10.1093/gbe/evv014 |
_version_ | 1782509868101402624 |
---|---|
author | Murat, Florent Zhang, Rongzhi Guizard, Sébastien Gavranović, Haris Flores, Raphael Steinbach, Delphine Quesneville, Hadi Tannier, Eric Salse, Jérôme |
author_facet | Murat, Florent Zhang, Rongzhi Guizard, Sébastien Gavranović, Haris Flores, Raphael Steinbach, Delphine Quesneville, Hadi Tannier, Eric Salse, Jérôme |
author_sort | Murat, Florent |
collection | PubMed |
description | We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. |
format | Online Article Text |
id | pubmed-5322550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-53225502017-03-02 Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops Murat, Florent Zhang, Rongzhi Guizard, Sébastien Gavranović, Haris Flores, Raphael Steinbach, Delphine Quesneville, Hadi Tannier, Eric Salse, Jérôme Genome Biol Evol Research Article We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. Oxford University Press 2015-01-28 /pmc/articles/PMC5322550/ /pubmed/25637221 http://dx.doi.org/10.1093/gbe/evv014 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Murat, Florent Zhang, Rongzhi Guizard, Sébastien Gavranović, Haris Flores, Raphael Steinbach, Delphine Quesneville, Hadi Tannier, Eric Salse, Jérôme Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title | Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title_full | Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title_fullStr | Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title_full_unstemmed | Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title_short | Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops |
title_sort | karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322550/ https://www.ncbi.nlm.nih.gov/pubmed/25637221 http://dx.doi.org/10.1093/gbe/evv014 |
work_keys_str_mv | AT muratflorent karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT zhangrongzhi karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT guizardsebastien karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT gavranovicharis karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT floresraphael karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT steinbachdelphine karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT quesnevillehadi karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT tanniereric karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops AT salsejerome karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops |