Cargando…

Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops

We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered prot...

Descripción completa

Detalles Bibliográficos
Autores principales: Murat, Florent, Zhang, Rongzhi, Guizard, Sébastien, Gavranović, Haris, Flores, Raphael, Steinbach, Delphine, Quesneville, Hadi, Tannier, Eric, Salse, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322550/
https://www.ncbi.nlm.nih.gov/pubmed/25637221
http://dx.doi.org/10.1093/gbe/evv014
_version_ 1782509868101402624
author Murat, Florent
Zhang, Rongzhi
Guizard, Sébastien
Gavranović, Haris
Flores, Raphael
Steinbach, Delphine
Quesneville, Hadi
Tannier, Eric
Salse, Jérôme
author_facet Murat, Florent
Zhang, Rongzhi
Guizard, Sébastien
Gavranović, Haris
Flores, Raphael
Steinbach, Delphine
Quesneville, Hadi
Tannier, Eric
Salse, Jérôme
author_sort Murat, Florent
collection PubMed
description We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids.
format Online
Article
Text
id pubmed-5322550
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-53225502017-03-02 Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops Murat, Florent Zhang, Rongzhi Guizard, Sébastien Gavranović, Haris Flores, Raphael Steinbach, Delphine Quesneville, Hadi Tannier, Eric Salse, Jérôme Genome Biol Evol Research Article We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids. Oxford University Press 2015-01-28 /pmc/articles/PMC5322550/ /pubmed/25637221 http://dx.doi.org/10.1093/gbe/evv014 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Murat, Florent
Zhang, Rongzhi
Guizard, Sébastien
Gavranović, Haris
Flores, Raphael
Steinbach, Delphine
Quesneville, Hadi
Tannier, Eric
Salse, Jérôme
Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title_full Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title_fullStr Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title_full_unstemmed Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title_short Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops
title_sort karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322550/
https://www.ncbi.nlm.nih.gov/pubmed/25637221
http://dx.doi.org/10.1093/gbe/evv014
work_keys_str_mv AT muratflorent karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT zhangrongzhi karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT guizardsebastien karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT gavranovicharis karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT floresraphael karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT steinbachdelphine karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT quesnevillehadi karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT tanniereric karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops
AT salsejerome karyotypeandgeneorderevolutionfromreconstructedextinctancestorshighlightcontrastsingenomeplasticityofmodernrosidcrops