Cargando…
Naked but Not Hairless: The Pitfalls of Analyses of Molecular Adaptation Based on Few Genome Sequence Comparisons
The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a si...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322551/ https://www.ncbi.nlm.nih.gov/pubmed/25714745 http://dx.doi.org/10.1093/gbe/evv036 |
Sumario: | The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers. |
---|