Cargando…
Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration – a risk of CVD
BACKGROUND: Obese people have a higher prevalence of cardiovascular disease, which is supposed to be due to autonomic dysfunction and/or metabolic disorder. The alterations in cardiac autonomic functions bring out the changes in the heart rate variability (HRV) indicators, an assessing tool for card...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322847/ https://www.ncbi.nlm.nih.gov/pubmed/28255249 http://dx.doi.org/10.2147/DMSO.S123935 |
Sumario: | BACKGROUND: Obese people have a higher prevalence of cardiovascular disease, which is supposed to be due to autonomic dysfunction and/or metabolic disorder. The alterations in cardiac autonomic functions bring out the changes in the heart rate variability (HRV) indicators, an assessing tool for cardiac autonomic conditions. OBJECTIVE: To compare the cardiac autonomic activity between obese and normal weight adults and find out the highest association between the indices of HRV and obesity. METHODS: The study was conducted in 30 adult obese persons (body mass index [BMI] >30 kg/m(2)) and 29 healthy normal weight controls (BMI 18–24 kg/m(2)). Short-term HRV variables were assessed using standard protocol. Data were compared between groups using Mann–Whitney U test. Obesity indices such as waist circumference, hip circumference, waist–hip ratio (WHR), and BMI were measured and calculated, and they were correlated with HRV indices using Spearman’s correlation analysis. RESULTS: In the obese group, there was a significant increase in the mean heart rate, whereas the HRV parasympathetic indicators were less (eg, root mean square of differences of successive RR intervals [28.75 {16.72–38.35} vs 41.55 {30.6–56.75} ms, p=0.018], number of RR intervals that differ by >50 ms, that is, NN50 [15.5 {2–39} vs 83.5 {32.75–116.25}, p=0.010], etc) and the sympathetic indicator low frequency (LF)/high frequency (HF) ratio (1.2 [0.65–2.20] vs 0.79 [0.5–1.02], p=0.045) was more than that of the normal weight group. Spearman’s correlation between HRV and obesity indices showed significant positive correlation of WHR with LF in normalized unit (r=0.478, p<0.01) and LF/HF ratio (r=0.479, p<0.01), whereas it had significant negative correlation with high frequency power ms(2) (r=−0.374, p<0.05) and HF in normalized unit (r=−0.478, p<0.01). There was a nonsignificant correlation of BMI with HRV variables in obese individuals. CONCLUSION: Increased WHR, by far an indicator of visceral adiposity, was strongly associated with reduced cardiac parasympathetic and increased sympathetic activity in obese individuals defined by BMI. However, BMI itself has a weak relationship with HRV cardiac autonomic markers. Thus, even with a slight increase in WHR in an individual, there could be a greater risk of cardiovascular morbidity and mortality brought about by cardiac autonomic alterations. |
---|