Cargando…
miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs
The ten-eleven translocation-1 (Tet1), which converts 5-methylcytosine (5mC) to 5-hydroxymethycytosine (5hmC), plays important roles in many important biological processes, such as mouse embryonic stem cells (ESCs) maintenance. However, the mechanisms for Tet-1 regulation remain largely unknown. Her...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323127/ https://www.ncbi.nlm.nih.gov/pubmed/27449105 http://dx.doi.org/10.18632/oncotarget.10751 |
Sumario: | The ten-eleven translocation-1 (Tet1), which converts 5-methylcytosine (5mC) to 5-hydroxymethycytosine (5hmC), plays important roles in many important biological processes, such as mouse embryonic stem cells (ESCs) maintenance. However, the mechanisms for Tet-1 regulation remain largely unknown. Here we showed that miR-29 family (miR-29a, miR-29b and miR-29c) can directly repress Tet1 expression. We found that Tet1 was highly expressed and 5hmC was presented at relatively high levels in mouse ESCs, but the levels of both Tet1 and 5hmC were reduced during the early differentiation of ESCs. On the contrary, miR-29 level was increased in this process. ESCs stably transfecting with miR-29 precursors showed lower levels of Tet1 protein and 5hmC. Furthermore, we demonstrated that miR-29 overexpression selectively affected cell lineage markers and skewed ESC differentiation, which was similar in Tet1 knockdown ESCs. Our results indicate that miR-29 is a direct regulator of Tet1 in mouse ESCs. |
---|