Cargando…
Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor
Blocking the interaction of human programmed death 1 (hPD-1) and its ligand hPD-L1 has been a promising immunotherapy in cancer treatment. In this paper, using a computational de novo peptide design method, we designed several hPD-1 binding peptides. The most potent peptide Ar5Y_4 showed a KD value...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323130/ https://www.ncbi.nlm.nih.gov/pubmed/27533458 http://dx.doi.org/10.18632/oncotarget.11274 |
Sumario: | Blocking the interaction of human programmed death 1 (hPD-1) and its ligand hPD-L1 has been a promising immunotherapy in cancer treatment. In this paper, using a computational de novo peptide design method, we designed several hPD-1 binding peptides. The most potent peptide Ar5Y_4 showed a KD value of 1.38 ± 0.39 μM, comparable to the binding affinity of the cognate hPD-L1. A Surface Plasmon Resonance (SPR) competitive binding assay result indicated that Ar5Y_4 could inhibit the interaction of hPD-1/hPD-L1. Moreover, Ar5Y_4 could restore the function of Jurkat T cells which had been suppressed by stimulated HCT116 cells. Peptides described in this paper provide promising biologic candidates for cancer immunotherapy or diagnostics. |
---|