Cargando…
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneou...
Autores principales: | Chen, Xing, Yan, Chenggang Clarence, Zhang, Xu, You, Zhu-Hong, Huang, Yu-An, Yan, Gui-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323153/ https://www.ncbi.nlm.nih.gov/pubmed/27533456 http://dx.doi.org/10.18632/oncotarget.11251 |
Ejemplares similares
-
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2018) -
WBSMDA: Within and Between Score for MiRNA-Disease Association prediction
por: Chen, Xing, et al.
Publicado: (2016) -
Heterogeneous graph inference based on similarity network fusion for predicting lncRNA–miRNA interaction
por: Fan, Yongxian, et al.
Publicado: (2020) -
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020)